
Romolo Marotta

Concurrent and parallel
programming

Lock
implementations

…zZz…

Blocking coordination

SHARED RESOURCE

Concurrent and parallel programming
4

Choosing between them is
delegated to developers!

This is a very hard task:
multiple trade offs!

SPINNING

SPIN

SPIN

Spinning vs Sleeping

Concurrent and parallel programming
5

Guaranteed low latency

Computing power savings

CS

CS

CS

CS CS CS

CPU cycles are
wasted!

Very low
latency!!!

Benefits Spinning

SLEEP

SLEEP

Spinning vs Sleeping

Concurrent and parallel programming
6

Guaranteed low latency

Computing power savings

CS

CS

CS

CS CS CS

Reduced waste
of CPU cycles!

Increased
latency!!!

WAKE
UP

WAKE
UP

Benefits Spinning Sleeping Desiderata

Waiting Policy

Autonomic Adaptivity

Spin vs Sleep – is that all?

• Choosing the proper back off scheme is very challenging

• Even implementing a simple spin lock is not trivial
◦ Trade off between low and high contented case

◦ You should have heard about algorithms for Mutual Exclusion in
Distributed Systems lectures

• E.g. Dijkstra, Bakery algorithm, Peterson...

◦ Those algorithm essentially implements spin locks by resorting
only on read/write operations

• Here, we will focus on spin locking algorithms that exploit
stronger synchronization primitives… RMW!

Concurrent and parallel programming
7

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
8

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1));

}

void release(int *lock){

 *lock = 0;

}

A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second

Concurrent and parallel programming
9

1 2 3 4 5 6 6 5 4 3 2 1

while(!stop){

 acquire(&lock);

 flip_array();

 release(&lock);

}

Results

Concurrent and parallel programming
10

#Threads

OPS/s

Ideal

TAS

Memory Model

Concurrent and parallel programming
11

cache cache cache cache

Memory

BUS

data

data

Memory Model

Concurrent and parallel programming
12

cache cache cache cache

Memory

BUS

data

data

Memory Model

Concurrent and parallel programming
13

cache cache cache cache

Memory

BUS

data

data

data

Memory Model

Concurrent and parallel programming
14

cache cache cache cache

Memory

BUS

data data

data

Memory Model

Concurrent and parallel programming
15

cache cache cache cache

Memory

BUS

data data

data

Memory Model

Concurrent and parallel programming
16

cache cache cache cache

Memory

BUS

data data

data

data

Memory Model

Concurrent and parallel programming
17

cache cache cache cache

Memory

BUS

data

data

data

Memory Model

Concurrent and parallel programming
18

cache cache cache cache

Memory

BUS

data

data

data

data

Memory Model

Concurrent and parallel programming
19

cache cache cache cache

Memory

BUS

data

data

data data

Memory Model

Concurrent and parallel programming
20

cache cache cache cache

Memory

BUS

data

data

data data

Lock
implementations

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
22

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1));

}

void release(int *lock){

 *lock = 0;

}

Results

Concurrent and parallel programming
23

#Threads

OPS/s

Ideal

TAS

Memory Model

Concurrent and parallel programming
24

cache cache cache cache

Memory

BUS

data

data

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
25

cache cache cache cache

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1));

}

void release(int *lock){

 *lock = 0;

}

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
26

cache cache cache cache

We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly?

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1));

}

void release(int *lock){

 *lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
27

cache cache cache cache

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

 *lock = 0;

}

Results

Concurrent and parallel programming
28

#Threads

OPS/s

Ideal

TAS

TTAS

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
29

cache cache cache cache• Lock handover costs increase with the concurrency level
• Very lightweight for the uncontended case
• Is it feasible reducing handover costs?
• AND IMPROVING FAIRNESS?

int lock = 0;

void acquire(int *lock){

 while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

 *lock = 0;

}

FIFO locks

Ticket locks

• Similar to the bakery algorithm but it uses RMW
instructions

• Two variables
◦ The next available ticket

◦ The served ticket

Concurrent and parallel programming
31

void acquire(tck_lock *lock){

 int cur_tck;

 int mytck = fetch&add(lock->ticket, 1);

 while(mytck != (cur_tck = lock->current))

 delay((mytck-cur_tck)*BASE);

}

void release(tck_lock *lock){ lock->current += 1; }

typedef struct _tck_lock{
 int ticket = 0;

 int current = 0;

} tck_lock;

Ticket locks

• Ensure fairness

• Similar structure w.r.t. TTAS spinlock
◦ One variable updated once at each acquisition (better than TTAS)

◦ Write-1-Read-N variable updated at each release (same as TTAS)

• How?

Concurrent and parallel programming
32

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
33

0 1 1 1

Ticket = 0 1 2 3

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
34

0 1 1 1

Ticket = 0 1 2 3

1 0

Anderson queue lock

Concurrent and parallel programming
35

cache cache cache cache

void acquire(anderson_lock *lock){

 mytck = fetch&add(lock->ticket, 1);

 while(lock->array[mytck]);

 lock->array[mytck] = 1;

}
void release(int *lock){

 lock->array[mytck+1] = 0;

}

Anderson queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)

• Cons:
◦ Increased memory footprint
◦ Each lock needs to know the maximum number of threads

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
36

CLH lock

Concurrent and parallel programming
37

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 10

CLH queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
38

NUMA

Concurrent and parallel programming
39

CPU 0 CPU 1

CPU 2 CPU 3

Memory

Memory

Memory

Memory

LLC LLC

LLC LLC

MCS lock

Concurrent and parallel programming
40

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL 0 1 0

CAS

MCS lock

Concurrent and parallel programming
41

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL 0 1 0

MCS queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)
◦ No-remote spinning

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ MCS, CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
42

MCS in practice: the Linux kernel case

• The Linux kernel uses a particular implementation of a MCS
lock: Qspinlock

• Additional challenge:
◦ Maintain compatibility with classical 32-bit locks
◦ MCS uses pointers (64-bit)

• Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirq, hardirq, nmi)
3. Finite number of cores

• Use an additional bit for fast lock handover

Concurrent and parallel programming
43

031 18 17 16 15 9 8 7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)

MCS in practice: the Linux kernel case

Concurrent and parallel programming
44

031 18 17 16 15 9 8 7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)

next locked

0 next locked

0

next locked

1

core 3

core 0

core 1

0

3

1

2

tail

A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second

Concurrent and parallel programming
45

1 2 3 4 5 6 6 5 4 3 2 1

while(!stop){

 acquire(&lock);

 flip_array();

 release(&lock);

}

One lock
to rule them all…

Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8

Intel i7-7700HQ – 8 cores

tas ttas ticket bttas tqueue clh mcs mutex

Concurrent and parallel programming
47

Performance

0

500

1000

1500

2000

2500

6 12 24 36 48

AMD Opteron 6168 - 48 cores

tas ttas ticket bttas tqueue clh mcs mutex

Concurrent and parallel programming
48

At the beginning was… Spin vs Sleep

Concurrent and parallel programming
49

Guaranteed low latency

Computing power savings

Benefits Spinning Sleeping

Waiting Policy

SPIN

SPIN

CS

CS

CS

CS CS CS

SLEEP

SLEEP

CS

CS

CS

CS CS CS

WAKE
UP

WAKE
UP

SPIN:
++Waste of CPU Cycles

--Latency

Sleep:
--Waste of CPU Cycles

++Latency

How to avoid costs for sleeping?

A general approach exists:

• Reducing the frequency of sleep/wake-up pairs

• How?

Trading Fairness in favor of Throughput

• Make some thread sleep longer than others

• If the lock is highly contented, some thread willing to
access the critical section will arrive soon

• If the lock is scarcely contented, we pay lower latency as
TTAS locks

Concurrent and parallel programming
50

An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Concurrent and parallel programming
51

Credits: Falsafi et all. “Unlocking energy”

An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Concurrent and parallel programming
52

• Global lock
• 1000 cycles CS
• 40 cores

Credits: Falsafi et all. “Unlocking energy”

An example 2 – Malthusian locks

Concurrent and parallel programming
53

Credits: Dave Dice “Malthusian locks”

An example 2 – Malthusian locks

Concurrent and parallel programming
54

Credits: Dave Dice “Malthusian locks”

Hierarchical locks

HPC wants maximum usage of CPU power

• Sleeping might be required for better management of I/O

• Large number of cores per machine

NUMA (again)

• FIFO locks cannot avoid transfer to remote NUMA nodes

Concurrent and parallel programming
55

Again, we can trade fairness in favor of throughput

Hierarchical locks

• Transfer the lock to threads that reside on the same NUMA
node

• Hierarchical TTAS
◦ Shorter backoff for local threads, longer for remote ones

Concurrent and parallel programming
56

-1

NUMA NODE 0 NUMA NODE 1

Free lock0

Hierarchical locks

• Transfer the lock to threads that reside on the same NUMA
node

• Hierarchical TTAS
◦ Shorter backoff for local threads, longer for remote ones

• Hierarchical QUEUE LOCKS (lock cohorting)
◦ One global lock (the application one)

◦ One lock per NUMA node (“under the hoods”)

Concurrent and parallel programming
57

NUMA NODE 0 NUMA NODE 1

Optimizing Critical
Section Execution

Optimizing the waiting phase

We have seen several approaches to optimize the lock
acquisition phase:

• Back-off scheme

• Cache-awareness TTAS, FIFO locks

• Non-trivial combinations of both sleep and spin phases

What can we do to improve the execution of threads running
the critical section?

• Improve locality and cache usage

Concurrent and parallel programming
59

How?

Observation:

• A lock (typically) protects data (instead of code)

Idea!

• There is a good chance that threads willing to acquire a
lock want to access “similar” sets of data

Allow thread holding the lock to execute the critical
section for waiting threads

• Reduces lock handover costs

• Increases locality

Concurrent and parallel programming
60

Flat Combining

• Use a linked list for holding waiting threads

• Each node maintains:
◦ The waiting thread ID

◦ The critical section descriptor

• Thread check waiting queue before releasing the lock
◦ If empty exit

Concurrent and parallel programming
61

TAIL

Flat Combining

• Use a linked list for holding waiting threads

• Each node maintains:
◦ The waiting thread ID

◦ The critical section descriptor

• Thread check waiting queue before releasing the lock
◦ If empty exit

◦ Otherwise take a node from the waiting queue and execute the
critical section for the waiting thread

Concurrent and parallel programming
62

Op Op T

Flat Combining

• It might allow further (asymptotic) optimizations (e.g., data
structures)

• Operations can be combined to each other BEFORE
interacting with protected data

Concurrent and parallel programming
63

Pop TPush(1)

STACK

Flat Combining

• It might allow further (asymptotic) optimizations (e.g., data
structures)

• Operations can be combined to each other BEFORE
interacting with protected data

• Operations can be applied in batch (relevant for accesses
that require a search)

Concurrent and parallel programming
64

TPush(1) Push(2)

Flat Combining

Concurrent and parallel programming
65

H 10 20 30 40 50 T

H 32 34 55 90 T

32 34 55 90

No need for restarting the search from scratch!

Flat Combining

Is it a silver bullet? Can replace complex lock-free
algorithms?

Concurrent and parallel programming
66

NO!

CONTENTIONHIGH LOW
Credits: Hendler et all. “Flat combining and the synchronization-parallelism tradeoff”

Flat Combining

Is it a silver bullet? Can replace complex lock-free
algorithms?

• No, performance depends on the actual contention!

• Combining requires hand-written code!

How to improve for NUMA?

• Hierarchical Flat Combining

Concurrent and parallel programming
67

Approaches targeting peculiar workloads

• Read-Write locks
◦ Threads that do not want to perform updates can acquire the

lock with other “readers”

◦ Threads willing to perform updates (“writers”) take exclusive lock

• Easy to implement:
◦ Lock < 0 : acquired by a writer

◦ Lock = 0 : available

◦ Lock = N > 0 : locked by N readers

• RW locks work well in read-mostly workloads, but:
◦ It has a greater impact to readers (exclusive accesses to the lock

variable)

◦ Can be optimized by splitting the read counter

Concurrent and parallel programming
68

RW locks

Concurrent and parallel programming
69

Owner Flag 0 Flag1

Multiple RW locks (each one has its own cache line)

If Owner is free
Readers acquire their
assigned Flag (e.g. the
one of their numa node)
Then, check again Owner

Writer acquire Owner
and spin until all flags
are 0

Approaches targeting peculiar workloads (2)

• When read-only accesses are predominant, we can make
reader DO NOT use any lock

• Version Numbers

• Writer:
◦ Acquire a (writer) lock
◦ Increase Version Number
◦ Apply Update
◦ Increase Version Number
◦ Release Lock

Concurrent and parallel programming
70

H 10 20 30 40 50 T

• Reader:
◦ Wait even Version Number

◦ Do job

◦ If Version Number is
unchanged OK else retry

V.N. = 0V.N. = 1V.N. = 2

Approaches targeting peculiar workloads (3)

• When read-only accesses are predominant, we can make
reader DO NOT use any lock

• Version Numbers

• Read-Copy-Update
◦ Single shared-data entry point

• Writer:
◦ Create a private snapshot
◦ Apply update
◦ Publish the updated snapshot via single CAS

Concurrent and parallel programming
71

• Reader:
◦ Do job

These solutions NEEDS memory management
as non-blocking algorithms!!!

Final Picture

Concurrent and parallel programming
72

HIGHLOW

HIGH
Pe

rf
o

rm
an

ce

Contention Level

FIFO locks

The Java Case

Concurrent and parallel programming
73

Credits: Kotzmann et all. “Synchronization and Object Locking”

The Java Case

Concurrent and parallel programming
74

Credits: Kotzmann et all. “Synchronization and Object Locking”

The Java Case

Concurrent and parallel programming
75

Credits: Kotzmann et all. “Synchronization and Object Locking”

The Java Case

Concurrent and parallel programming
76

Affinity oriented (lazy) path.
Tunable The amount of spinning for fat locks

can be configured (no spin vs adaptive)

This is default
after first inflate.
Deflating can be
configured

Synchronization and Object Locking: https://wiki.openjdk.java.net/display/HotSpot/Synchronization

Credits: Kotzmann et all. “Synchronization and Object Locking”

https://wiki.openjdk.java.net/display/HotSpot/Synchronization

Final Picture

Concurrent and parallel programming
77

HIGHLOW

HIGH
Pe

rf
o

rm
an

ce

Contention Level

FIFO locks

Synchronization approaches:

• Non-blocking data structures

• Locks

• Transactional Memory

Transactional Memory

• Why?
◦ Fine grain locking (or non-blocking synchronization) can scale but

it is hard

◦ Locks do not scale in general, but they are hard too:
• Deadlocks

• Races (forgotten locks)

• Do not compose

• Transactions:
◦ They compose (e.g. nested transactions)

◦ Simpler to reason about

Concurrent and parallel programming
80

Begin_transaction

 x.op()

 y.op2(k)

 z.op(j)

End_transaction

Transactions

• Well known in the context of databases

• Conceived integration of transaction in hardware (1993)

• Software implementations (1995-2005)

• Commercial hardware support (2013)

Concurrent and parallel programming
81

Transaction on
Transactional Memory

Transaction on
DBMS

Transactions

Concurrent and parallel programming
82

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

DBMS

Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Transactions

Concurrent and parallel programming
83

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

Transactions

Concurrent and parallel programming
84

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Transactions

Concurrent and parallel programming
85

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Deadlock or starvation
freedom

Obstruction of lock
freedom

Hardware Transactional Memory

Concurrent and parallel programming
86

Application

Hardware

Software TM
Hardware

Transactions

Memory:
• Exploit cache coherency protocols
• Modified
• Exclusive
• Shared
• Invalid
• Tracked for speculative execution of transaction
• Losing track of a cache line leads to an abort

CPU:
• Ability to restore the

processor state as the
one before the
beginning

Intel TSX
BlueGene
RockProcessor
Arm Transactional
Extension
IBM POWER8 and 9

Hardware transaction and abort

Concurrent and parallel programming
87

• Why can a hardware transaction abort?
◦ Whenever, we lose track of a cache line….

• Any reason that could lead to an invalidation of a tracked
cache line:

◦ Another core wants it exclusive (conflict)

◦ Change of execution mode (syscall, interrupts, page fault)

◦ Working set too large

Intel Transactional Synchronization eXtensions (TSX)

Concurrent and parallel programming
88

RTE

• XBEGIN:
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

Are HTM so simple?

Concurrent and parallel programming
89

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

committed_count++;

do_job(buf,...)
_XEND();

return;

}

else goto start_tsx;

}

Huge memory init!!!

All threads try to updated the
same cache line!!!

This is not a
good fallback path!

Are HTM so simple?

Concurrent and parallel programming
90

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

do_job(buf,...)
_XEND();

FAD(&committed_count,1);

return;

}

else goto start_tsx;

}

Huge memory init!!!

This is not a
good fallback path!

Are HTM so simple?

Concurrent and parallel programming
91

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf);

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

do_job(buf,...)
_XEND();

FAD(&committed_count,1);

return;

}

else goto start_tsx;

}

This is not a
good fallback path!

Are HTM so simple?

Concurrent and parallel programming
92

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

if(fb || _XBEGIN() == _XBEGIN_STARTED){

if(lock==LOCKED) _XABORT();

if(fb) TTAS(&lock, LOCKED);

do_job(buf,...)
if(fb) lock = UNLOCKED;
_XEND();

FAD(&committed_count,1);

return;

}

else {fb=++retry>MAX_RETRY; goto start_tsx;}

}

NO!

Are HTM so simple?

Concurrent and parallel programming
93

NO!

XBEGIN … XABORT LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT

XBEGIN … XABORT

SPIN… LOCK … UNLOCK

SPIN …….……………………………………………………….. LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

No one will use the fast transactional path until
a period of quiescence!!!

Are HTM so simple?

Concurrent and parallel programming
94

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

if(fb || _XBEGIN() == _XBEGIN_STARTED){

if(lock==LOCKED){while(lock==LOCKED);
_XABORT();}

if(fb) TTAS(&lock, LOCKED);

do_job(buf,...)
if(fb) lock = UNLOCKED;
_XEND();

FAD(&committed_count,1);

return;

}

else {fb=++retry<MAX_RETRY; goto start_tsx;}

}

NO!

Are HTM so simple?

Concurrent and parallel programming
95

NO!

• We cannot replace lock with HTM as is due to performance
aspects

• Naïve code might abort frequently due to:
◦ Statistics

◦ Memory allocations

◦ Fallback path policy make the fast past rarely used

◦ False cache-sharing

◦ NUMA

◦ NVRAM

Intel Transactional Synchronization eXtensions (TSX)

Concurrent and parallel programming
96

RTE

• XBEGIN:
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

• Needs a fallback path (e.g., by using locks)

HLE

• XACQUIRE:
◦ Start a hardware transaction
◦ execute a RMW without the LOCK prefix

(XACQUIRE LOCK XCHG mutex, 1)

• XRELEASE:
◦ Execute a mov to release the lock (XRELEASE mov mutex, 0)
◦ Try to commit

• No need for an additional fallback path (just drop xacquire/xrelease and
restart)

Is it worth investing in optimizing our code for HTM?

Concurrent and parallel programming
97

• VERY HARD TO SAY

HTM has been around for a while (2014), BUT:

• IBM BlueGene/Q

• RockProcessor

• IBM POWER8 and 9 (Power ISA v.2.07 to 3.0)

• Intel TSX
◦ First releases were bugged => disabled by firmware update
◦ As other speculative components of Intel processors, they are

vulnerable (leak info, see TSX Asynchronous Abort (TAA) / CVE-2019-
11135) => disabled by firmware update

◦ Not supported in last generation Cometlake cpu (finger crossed for the
next one)

• Arm Transactional Extension introduced in the last generation
Armv9 (Mar 30 2021)

It is a high-end processor, not an off-the-shelf

Canceled in 2009

Not present in 10 (3.1)

What about Software Transactional Memory

Concurrent and parallel programming
98

From a programmer perspective:

• It is less efficient than hardware implementation

• It generally provides stronger progress

• No need for a fallback path

• Processor independent

• Stick with the support of the community/organization
developing it

What about Software Transactional Memory

Concurrent and parallel programming
99

• Hot topic in 2005

• A pletora of implementations for several programming
languages

• C/C++
◦ TinySTM
◦ From G++ v4.7 (still expertimental)

• C#
◦ SXM by Microsoft (discontinued)

• Haskell
◦ STM is part of the Haskell platform

• Scala
◦ Akka framework

• Java, python

	Slide 1: Concurrent and parallel programming
	Slide 3
	Slide 4: Blocking coordination
	Slide 5: Spinning vs Sleeping
	Slide 6: Spinning vs Sleeping
	Slide 7: Spin vs Sleep – is that all?
	Slide 8: Test-and-set spin lock
	Slide 9: A small benchmark
	Slide 10: Results
	Slide 11: Memory Model
	Slide 12: Memory Model
	Slide 13: Memory Model
	Slide 14: Memory Model
	Slide 15: Memory Model
	Slide 16: Memory Model
	Slide 17: Memory Model
	Slide 18: Memory Model
	Slide 19: Memory Model
	Slide 20: Memory Model
	Slide 21
	Slide 22: Test-and-set spin lock
	Slide 23: Results
	Slide 24: Memory Model
	Slide 25: Test-and-set spin lock
	Slide 26: Test-and-set spin lock
	Slide 27: Test-and-test-and-set spin lock
	Slide 28: Results
	Slide 29: Test-and-test-and-set spin lock
	Slide 30
	Slide 31: Ticket locks
	Slide 32: Ticket locks
	Slide 33: Anderson queue lock
	Slide 34: Anderson queue lock
	Slide 35: Anderson queue lock
	Slide 36: Anderson queue lock
	Slide 37: CLH lock
	Slide 38: CLH queue lock
	Slide 39: NUMA
	Slide 40: MCS lock
	Slide 41: MCS lock
	Slide 42: MCS queue lock
	Slide 43: MCS in practice: the Linux kernel case
	Slide 44: MCS in practice: the Linux kernel case
	Slide 45: A small benchmark
	Slide 46
	Slide 47: Performance
	Slide 48: Performance
	Slide 49: At the beginning was… Spin vs Sleep
	Slide 50: How to avoid costs for sleeping?
	Slide 51: An example - MutexEE
	Slide 52: An example - MutexEE
	Slide 53: An example 2 – Malthusian locks
	Slide 54: An example 2 – Malthusian locks
	Slide 55: Hierarchical locks
	Slide 56: Hierarchical locks
	Slide 57: Hierarchical locks
	Slide 58
	Slide 59: Optimizing the waiting phase
	Slide 60: How?
	Slide 61: Flat Combining
	Slide 62: Flat Combining
	Slide 63: Flat Combining
	Slide 64: Flat Combining
	Slide 65: Flat Combining
	Slide 66: Flat Combining
	Slide 67: Flat Combining
	Slide 68: Approaches targeting peculiar workloads
	Slide 69: RW locks
	Slide 70: Approaches targeting peculiar workloads (2)
	Slide 71: Approaches targeting peculiar workloads (3)
	Slide 72: Final Picture
	Slide 73: The Java Case
	Slide 74: The Java Case
	Slide 75: The Java Case
	Slide 76: The Java Case
	Slide 77: Final Picture
	Slide 79
	Slide 80: Transactional Memory
	Slide 81: Transactions
	Slide 82: Transactions
	Slide 83: Transactions
	Slide 84: Transactions
	Slide 85: Transactions
	Slide 86: Hardware Transactional Memory
	Slide 87: Hardware transaction and abort
	Slide 88: Intel Transactional Synchronization eXtensions (TSX)
	Slide 89: Are HTM so simple?
	Slide 90: Are HTM so simple?
	Slide 91: Are HTM so simple?
	Slide 92: Are HTM so simple?
	Slide 93: Are HTM so simple?
	Slide 94: Are HTM so simple?
	Slide 95: Are HTM so simple?
	Slide 96: Intel Transactional Synchronization eXtensions (TSX)
	Slide 97: Is it worth investing in optimizing our code for HTM?
	Slide 98: What about Software Transactional Memory
	Slide 99: What about Software Transactional Memory

