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Choosing between them is 
delegated to developers!

This is a very hard task:
multiple trade offs!
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Spinning vs Sleeping
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Guaranteed low latency 

Computing power savings
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CPU cycles are 
wasted!

Very low 
latency!!!

Benefits Spinning
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Spinning vs Sleeping

Concurrent and parallel programming
6

Guaranteed low latency 
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Reduced waste 
of CPU cycles!

Increased 
latency!!!

WAKE
UP

WAKE
UP

Benefits Spinning Sleeping Desiderata

Waiting Policy

Autonomic Adaptivity



Spin vs Sleep – is that all?

• Choosing the proper back off scheme is very challenging

• Even implementing a simple spin lock is not trivial
◦ Trade off between low and high contented case

◦ You should have heard about algorithms for Mutual Exclusion in 
Distributed Systems lectures

• E.g. Dijkstra, Bakery algorithm, Peterson...

◦ Those algorithm essentially implements spin locks by resorting 
only on read/write operations

• Here, we will focus on spin locking algorithms that exploit 
stronger synchronization primitives… RMW!
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Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1));

}

void release(int *lock){ 

  *lock = 0; 

}



A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second
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while(!stop){

  acquire(&lock);

  flip_array();

  release(&lock);

}



Results
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Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1));

}

void release(int *lock){ 

  *lock = 0; 

}



Results
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Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1));

}

void release(int *lock){ 

  *lock = 0; 

}



Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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cache cache cache cache

We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly? 

int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1));

}

void release(int *lock){ 

  *lock = 0; 

}



Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

  *lock = 0; 

}



Results
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Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
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cache cache cache cache• Lock handover costs increase with the concurrency level
• Very lightweight for the uncontended case
• Is it feasible reducing handover costs?
• AND IMPROVING FAIRNESS?

int lock = 0;

void acquire(int *lock){ 

  while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

  *lock = 0; 

}



FIFO locks



Ticket locks

• Similar to the bakery algorithm but it uses RMW 
instructions

• Two variables
◦ The next available ticket

◦ The served ticket
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void acquire(tck_lock *lock){ 

   int cur_tck;

   int mytck = fetch&add(lock->ticket, 1);   

   while(mytck != (cur_tck = lock->current) ) 

      delay((mytck-cur_tck)*BASE);

}

void release(tck_lock *lock){ lock->current += 1; }

typedef struct _tck_lock{
  int ticket  = 0;

  int current = 0;

} tck_lock;



Ticket locks

• Ensure fairness

• Similar structure w.r.t. TTAS spinlock
◦ One variable updated once at each acquisition (better than TTAS)

◦ Write-1-Read-N variable updated at each release (same as TTAS)

• How?

Concurrent and parallel programming
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Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
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0 1 1 1

Ticket = 0 1 2 3



Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line
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Ticket = 0 1 2 3

1 0



Anderson queue lock
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cache cache cache cache

void acquire(anderson_lock *lock){ 

  mytck = fetch&add(lock->ticket, 1);   

  while(lock->array[mytck]);

  lock->array[mytck] = 1; 

}
void release(int *lock){ 

 lock->array[mytck+1] = 0;

}



Anderson queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)

• Cons:
◦ Increased memory footprint
◦ Each lock needs to know the maximum number of threads

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
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CLH lock
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 10



CLH queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
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NUMA
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MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL 0 1 0

CAS



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL 0 1 0



MCS queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)
◦ No-remote spinning

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ MCS, CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
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MCS in practice: the Linux kernel case

• The Linux kernel uses a particular implementation of a MCS 
lock: Qspinlock

• Additional challenge:
◦ Maintain compatibility with classical 32-bit locks
◦ MCS uses pointers (64-bit)

• Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirq, hardirq, nmi)
3. Finite number of cores

• Use an additional bit for fast lock handover 

Concurrent and parallel programming
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locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)



MCS in practice: the Linux kernel case
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A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second
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while(!stop){

  acquire(&lock);

  flip_array();

  release(&lock);

}



One lock 
to rule them all…
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Performance
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At the beginning was… Spin vs Sleep
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Guaranteed low latency 

Computing power savings

Benefits Spinning Sleeping

Waiting Policy
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WAKE
UP

WAKE
UP

SPIN:
++Waste of CPU Cycles

--Latency

Sleep:
--Waste of CPU Cycles

++Latency



How to avoid costs for sleeping?

A general approach exists:

• Reducing the frequency of sleep/wake-up pairs

• How?

Trading Fairness in favor of Throughput

• Make some thread sleep longer than others

• If the lock is highly contented, some thread willing to 
access the critical section will arrive soon

• If the lock is scarcely contented, we pay lower latency as 
TTAS locks

Concurrent and parallel programming
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An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and 
energy efficiency

Concurrent and parallel programming
51

Credits: Falsafi et all. “Unlocking energy”



An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and 
energy efficiency
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• Global lock
• 1000 cycles CS
• 40 cores

Credits: Falsafi et all. “Unlocking energy”



An example 2 – Malthusian locks
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Credits: Dave Dice “Malthusian locks”



An example 2 – Malthusian locks

Concurrent and parallel programming
54

Credits: Dave Dice “Malthusian locks”



Hierarchical locks

HPC wants maximum usage of CPU power

• Sleeping might be required for better management of I/O

• Large number of cores per machine 

NUMA (again)

• FIFO locks cannot avoid transfer to remote NUMA nodes

Concurrent and parallel programming
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Again, we can trade fairness in favor of throughput



Hierarchical locks

• Transfer the lock to threads that reside on the same NUMA 
node 

• Hierarchical TTAS
◦ Shorter backoff for local threads, longer for remote ones

Concurrent and parallel programming
56
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NUMA NODE 0 NUMA NODE 1

Free lock0



Hierarchical locks

• Transfer the lock to threads that reside on the same NUMA 
node 

• Hierarchical TTAS
◦ Shorter backoff for local threads, longer for remote ones

• Hierarchical QUEUE LOCKS (lock cohorting)
◦ One global lock (the application one)

◦ One lock per NUMA node (“under the hoods”)

Concurrent and parallel programming
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NUMA NODE 0 NUMA NODE 1



Optimizing Critical 
Section Execution



Optimizing the waiting phase

We have seen several approaches to optimize the lock 
acquisition phase:

• Back-off scheme

• Cache-awareness TTAS, FIFO locks

• Non-trivial combinations of both sleep and spin phases

What can we do to improve the execution of threads running 
the critical section?

• Improve locality and cache usage

Concurrent and parallel programming
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How?

Observation:

• A lock (typically) protects data (instead of code)

Idea!

• There is a good chance that threads willing to acquire a 
lock want to access “similar” sets of data

Allow thread holding the lock to execute the critical 
section for waiting threads

• Reduces lock handover costs

• Increases locality

Concurrent and parallel programming
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Flat Combining

• Use a linked list for holding waiting threads

• Each node maintains:
◦ The waiting thread ID

◦ The critical section descriptor

• Thread check waiting queue before releasing the lock
◦ If empty exit

Concurrent and parallel programming
61

TAIL



Flat Combining

• Use a linked list for holding waiting threads

• Each node maintains:
◦ The waiting thread ID

◦ The critical section descriptor

• Thread check waiting queue before releasing the lock
◦ If empty exit

◦ Otherwise take a node from the waiting queue and execute the 
critical section for the waiting thread

Concurrent and parallel programming
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Op Op T



Flat Combining

• It might allow further (asymptotic) optimizations (e.g., data 
structures)

• Operations can be combined to each other BEFORE 
interacting with protected data

Concurrent and parallel programming
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Pop TPush(1)



STACK

Flat Combining

• It might allow further (asymptotic) optimizations (e.g., data 
structures)

• Operations can be combined to each other BEFORE 
interacting with protected data

• Operations can be applied in batch (relevant for accesses 
that require a search)

Concurrent and parallel programming
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TPush(1) Push(2)



Flat Combining
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H 10 20 30 40 50 T

H 32 34 55 90 T

32 34 55 90

No need for restarting the search from scratch!



Flat Combining

Is it a silver bullet? Can replace complex lock-free 
algorithms?

Concurrent and parallel programming
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NO!

CONTENTIONHIGH LOW
Credits: Hendler et all. “Flat combining and the synchronization-parallelism tradeoff”



Flat Combining

Is it a silver bullet? Can replace complex lock-free 
algorithms?

• No, performance depends on the actual contention!

• Combining requires hand-written code!

How to improve for NUMA?

• Hierarchical Flat Combining

Concurrent and parallel programming
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Approaches targeting peculiar workloads

• Read-Write locks
◦ Threads that do not want to perform updates can acquire the 

lock with other “readers”

◦ Threads willing to perform updates (“writers”) take exclusive lock

• Easy to implement:
◦ Lock < 0 : acquired by a writer

◦ Lock = 0 : available

◦ Lock = N > 0 : locked by N readers

• RW locks work well in read-mostly workloads, but:
◦ It has a greater impact to readers (exclusive accesses to the lock 

variable)

◦ Can be optimized by splitting the read counter

Concurrent and parallel programming
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RW locks
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Owner Flag 0 Flag1

Multiple RW locks (each one has its own cache line)

If Owner is free
Readers acquire their 
assigned Flag (e.g. the 
one of their numa node)
Then, check again Owner 

Writer acquire Owner  
and spin until all flags 
are 0



Approaches targeting peculiar workloads (2)

• When read-only accesses are predominant, we can make 
reader DO NOT use any lock

• Version Numbers

• Writer:
◦ Acquire a (writer) lock
◦ Increase Version Number
◦ Apply Update
◦ Increase Version Number
◦ Release Lock

Concurrent and parallel programming
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H 10 20 30 40 50 T

• Reader:
◦ Wait even Version Number

◦ Do job

◦ If Version Number is 
unchanged OK else retry

V.N. = 0V.N. = 1V.N. = 2



Approaches targeting peculiar workloads (3)

• When read-only accesses are predominant, we can make 
reader DO NOT use any lock

• Version Numbers

• Read-Copy-Update
◦ Single shared-data entry point

• Writer:
◦ Create a private snapshot
◦ Apply update
◦ Publish the updated snapshot via single CAS

Concurrent and parallel programming
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• Reader:
◦ Do job

These solutions NEEDS memory management 
as non-blocking algorithms!!!



Final Picture
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The Java Case
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Credits: Kotzmann  et all. “Synchronization and Object Locking”



The Java Case
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Credits: Kotzmann  et all. “Synchronization and Object Locking”



The Java Case
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Credits: Kotzmann  et all. “Synchronization and Object Locking”



The Java Case

Concurrent and parallel programming
76

Affinity oriented (lazy) path.
Tunable The amount of spinning for fat locks 

can be configured (no spin vs adaptive)

This is default 
after first inflate. 
Deflating can be 
configured

Synchronization and Object Locking: https://wiki.openjdk.java.net/display/HotSpot/Synchronization

Credits: Kotzmann  et all. “Synchronization and Object Locking”

https://wiki.openjdk.java.net/display/HotSpot/Synchronization


Final Picture
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Synchronization approaches:

• Non-blocking data structures

• Locks

• Transactional Memory



Transactional Memory

• Why?
◦ Fine grain locking (or non-blocking synchronization) can scale but 

it is hard 

◦ Locks do not scale in general, but they are hard too:
• Deadlocks

• Races (forgotten locks)

• Do not compose

• Transactions:
◦ They compose (e.g. nested transactions)

◦ Simpler to reason about

Concurrent and parallel programming
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Begin_transaction

 x.op()

 y.op2(k) 

 z.op(j)

End_transaction



Transactions

• Well known in the context of databases 

• Conceived integration of transaction in hardware (1993)

• Software implementations (1995-2005)

• Commercial hardware support (2013)

Concurrent and parallel programming
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Transaction on
Transactional Memory

Transaction on
DBMS



Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

DBMS

Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit



Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead 
of developers

Float Exceptions are not 
transparent to developers



Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead 
of developers

Float Exceptions are not 
transparent to developers

(view) serializability:
Committed transactions see 

consistent values

Opacity:
Both committed and aborted 

transactions see 
consistent values



Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead 
of developers

Float Exceptions are not 
transparent to developers

(view) serializability:
Committed transactions see 

consistent values

Opacity:
Both committed and aborted 

transactions see 
consistent values

Deadlock or starvation
freedom

Obstruction of lock 
freedom 



Hardware Transactional Memory
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Application

Hardware

Software TM
Hardware

Transactions

Memory:
• Exploit cache coherency protocols
• Modified
• Exclusive
• Shared
• Invalid
• Tracked for speculative execution of transaction
• Losing track of a cache line leads to an abort

CPU:
• Ability to restore the  

processor state as the 
one before the 
beginning 

Intel TSX
BlueGene
RockProcessor
Arm Transactional 
Extension
IBM POWER8 and 9



Hardware transaction and abort
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• Why can a hardware transaction abort?
◦ Whenever, we lose track of a cache line….

• Any reason that could lead to an invalidation of a tracked 
cache line:

◦ Another core wants it exclusive (conflict)

◦ Change of execution mode (syscall, interrupts, page fault)

◦ Working set too large 



Intel Transactional Synchronization eXtensions (TSX)
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RTE

• XBEGIN: 
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a  hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically



Are HTM so simple?
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int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

committed_count++;

do_job(buf,...)
_XEND();

return;

}

else goto start_tsx;

}

Huge memory init!!!

All threads try to updated the 
same cache line!!!

This is not a 
good fallback path!



Are HTM so simple?
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int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

do_job(buf,...)
_XEND();

FAD(&committed_count,1);

return;

}

else goto start_tsx;

}

Huge memory init!!!

This is not a 
good fallback path!



Are HTM so simple?
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int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf);

start_tsx:

if(_XBEGIN() == _XBEGIN_STARTED){

do_job(buf,...)
_XEND();

FAD(&committed_count,1);

return;

}

else goto start_tsx;

}

This is not a 
good fallback path!



Are HTM so simple?
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int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

if(fb || _XBEGIN() == _XBEGIN_STARTED){

if(lock==LOCKED) _XABORT();

if(fb) TTAS(&lock, LOCKED);

do_job(buf,...)
if(fb) lock = UNLOCKED;
_XEND();

FAD(&committed_count,1);

return;

}

else {fb=++retry>MAX_RETRY; goto start_tsx;}

}

NO!



Are HTM so simple?
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NO!

XBEGIN … XABORT LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT

XBEGIN … XABORT

SPIN… LOCK … UNLOCK

SPIN …….……………………………………………………….. LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

No one will use the fast transactional path until 
a period of quiescence!!!



Are HTM so simple?
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int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

if(fb || _XBEGIN() == _XBEGIN_STARTED){

if(lock==LOCKED){while(lock==LOCKED);
_XABORT();}

if(fb) TTAS(&lock, LOCKED);

do_job(buf,...)
if(fb) lock = UNLOCKED;
_XEND();

FAD(&committed_count,1);

return;

}

else {fb=++retry<MAX_RETRY; goto start_tsx;}

}

NO!



Are HTM so simple?
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NO!

• We cannot replace lock with HTM as is due to performance 
aspects

• Naïve code might abort frequently due to:
◦ Statistics

◦ Memory allocations

◦ Fallback path policy make the fast past rarely used

◦ False cache-sharing

◦ NUMA

◦ NVRAM



Intel Transactional Synchronization eXtensions (TSX)
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RTE

• XBEGIN: 
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a  hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

• Needs a fallback path (e.g., by using locks)

HLE

• XACQUIRE: 
◦ Start a hardware transaction
◦ execute a RMW without the LOCK prefix 

(XACQUIRE LOCK XCHG mutex, 1)

• XRELEASE:
◦ Execute a mov  to release the lock (XRELEASE mov mutex, 0)
◦ Try to commit

• No need for an additional fallback path (just drop xacquire/xrelease and 
restart)
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• VERY HARD TO SAY

HTM has been around for a while (2014), BUT:

• IBM BlueGene/Q 

• RockProcessor

• IBM POWER8 and 9 (Power ISA v.2.07 to 3.0)

• Intel TSX
◦ First releases were bugged => disabled by firmware update
◦ As other speculative components of Intel processors, they are 

vulnerable (leak info, see TSX Asynchronous Abort (TAA) / CVE-2019-
11135) => disabled by firmware update

◦ Not supported in last generation Cometlake cpu (finger crossed for the 
next one)

• Arm Transactional Extension introduced in the last generation 
Armv9 (Mar 30 2021)

It is a high-end processor, not an off-the-shelf

Canceled in 2009

Not present in 10 (3.1)
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From a programmer perspective:

• It is less efficient than hardware implementation

• It generally provides stronger progress

• No need for a fallback path

• Processor independent

• Stick with the support of the community/organization 
developing it
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• Hot topic in 2005

• A pletora of implementations for several programming 
languages

• C/C++
◦ TinySTM
◦ From G++ v4.7 (still expertimental)

• C#
◦ SXM by Microsoft (discontinued)

• Haskell
◦ STM is part of the Haskell platform

• Scala
◦ Akka framework

• Java, python
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