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Amdahl Law—Fixed-size Model (1967)

• The workload is fixed: it studies how the behaviour of the same
program varies when adding more computing power

SAmdahl =
Ts

Tp
=

Ts

αTs + (1− α)Ts
p

=
1

α + (1−α)
p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

Ts : Serial execution time
Tp : Parallel execution time

• It can be expressed as well vs. the parallel fraction P = 1− α
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Fixed-size Model
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Speed-up According to Amdahl
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How Real is This?

lim
p→∞

=
1

α + (1−α)
p

=
1

α

• So if the sequential fraction is 20%, we have:

lim
p→∞

=
1

0.2
= 5

• Speedup 5 using infinte processors!
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Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the behaviour of a
scaled program varies when adding more computing power

W ′ = αW + (1− α)pW

SGustafson =
W ′

W
= α + (1− α)p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

W : Original Workload
W

′
: Scaled Workload
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Fixed-time Model
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Speed-up According to Gustafson
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Amdahl vs. Gustafson—a Driver’s Experience

Amdahl Law:
A car is traveling between two cities 60 Kms away, and has already traveled

half the distance at 30 Km/h. No matter how fast you drive the last half, it

is impossible to achieve 90 Km/h average speed before reaching the second

city. It has already taken you 1 hour and you only have a distance of 60 Kms

total: Going infinitely fast you would only achieve 60 Km/h.

Gustafson Law:
A car has been travelling for some time at less than 90 Km/h. Given enough

time and distance to travel, the car’s average speed can always eventually

reach 90 Km/h, no matter how long or how slowly it has already traveled. If

the car spent one hour at 30 Km/h, it could achieve this by driving at 120

Km/h for two additional hours.
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Sun, Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

SSun−Ni =
sequential time for Workload W ∗

parallel time for Workload W ∗ =

=
αW + (1− α)G (p)W

αW + (1− α)G (p)Wp
=
α + (1− α)G (p)

α + (1− α)G(p)
p

• where:
◦ G (p) describes the workload increase as the memory capacity increases
◦ W ∗ = αW + (1− α)G (p)W
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Memory-bounded Model
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Speed-up According to Sun, Ni

SSun−Ni =
α + (1− α)G (p)

α + (1− α)G(p)
p

• If G(p) = 1

SAmdahl =
1

α + (1−α)
p

• If G(p) = p
SGustafson = α + (1− α)p

In general G (p) > p gives a higher scale-up
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Application Model for Parallel Computers

Fixed-workload model
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Scalability

• Efficiency E = speed-up
number of processors

• Strong Scalability: If the efficiency is kept fixed while increasing
the number of processes and maintainig fixed the problem size

• Weak Scalability: If the efficiency is kept fixed while increasing at
the same rate the problem size and the number of processes
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Superlinear Speedup

• Can we have a Speed-up > p ?

◦ Workload increases more than computing power (G (p) > p)
◦ Cache effect: larger accumulated cache size. More or even all of the

working set can fit into caches and the memory access time reduces
dramatically

◦ RAM effect: enables the dataset to move from disk into RAM
drastically reducing the time required, e.g., to search it.

◦ The parallel algorithm uses some search like a random walk: the more
processors that are walking, the less distance has to be walked in total
before you reach what you are looking for.
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Parallel Programming

• Ad-hoc concurrent programming languages

• Development Tools
◦ Compilers try to optimize the code
◦ MPI, OpenMP, Libraries...
◦ Tools to ease the task of debugging parallel code (gdb, valgrind, ...)

• Writing parallel code is for artists, not scientists!
◦ There are approaches, not prepackaged solutions
◦ Every machine has its own singularities
◦ Every problem to face has different requisites
◦ The most efficient parallel algorithm is not the most intuitive one
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Ad-hoc languages

Ada Alef ChucK Clojure Curry
Cω E Eiffel Erlang Go

Java Julia Joule Limbo Occam
Orc Oz Pict Rust SALSA

Scala SequenceL SR Unified Parallel C XProc
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Classical Approach to Concurrent Programming

• Based on blocking primitives
◦ Semaphores
◦ Locks acquiring
◦ . . .

PRODUCER

Semaphore p, c = 0;

Buffer b;

while(1) {

<Write on b>

signal(p);

wait(c);

}

CONSUMER

Semaphore p, c = 0;

Buffer b;

while(1) {

wait(p);

<Read from b>

signal(c);

}
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Parallel Programs Properties

• Safety: nothing wrong happens
◦ It’s called Correctness as well

• Liveness: eventually something good happens
◦ It’s called Progress as well
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Correctness

• What does it mean for a program to be correct?
◦ What’s exactly a concurrent FIFO queue?
◦ FIFO implies a strict temporal ordering
◦ Concurrent implies an ambiguous temporal ordering

• Intuitively, if we rely on locks, changes happen in a non-interleaved
fashion, resembling a sequential execution

• We can say a concurrent execution is correct only because we can
associate it with a sequential one, which we know the functioning
of

• A concurrent execution is correct if it is equivalent to a correct
sequential execution
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A simplyfied model of a concurrent system

• A concurrent system is a collection of sequential threads that
communicate through shared data structures called objects.

• An object has a unique name and a set of primitive operations.

• An invocation of an operation op of the object x is written as

A op(args*) x

where A is the invoking thread and args∗ the sequence of
arguments A

• A response to an operation invocation on x is written as

A ret(res*) x

where A is the invoking thread and res∗ the sequence of results
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A simplyfied model of a concurrent execution

• A history is a sequence of invocations and replies generated on an
object by a set of threads

• A sequential history is a history where all the invocations have an
immediate response

• A concurrent history is a history that is not sequential

Sequential
H’: A op() x

A ret() x

B op() x

B ret() x

A op() y

A ret() y

Concurrent
H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y
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A simplyfied model of a concurrent execution (2)

• A process subhistory H|P of a history H is the subsequence of all
events in H whose process names are P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H|A: A op() x

A ret() x

A op() y

A ret() y

• Process subhistories are always sequential

23 of 46 - Concurrent Programming



A simplyfied model of a concurrent execution (2)

• A process subhistory H|P of a history H is the subsequence of all
events in H whose process names are P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H|A: A op() x

A ret() x

A op() y

A ret() y

• Process subhistories are always sequential

23 of 46 - Concurrent Programming



A simplyfied model of a concurrent execution (2)

• A process subhistory H|P of a history H is the subsequence of all
events in H whose process names are P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H|A: A op() x

A ret() x

A op() y

A ret() y

• Process subhistories are always sequential

23 of 46 - Concurrent Programming



A simplyfied model of a concurrent execution (2)

• A process subhistory H|P of a history H is the subsequence of all
events in H whose process names are P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H|A: A op() x

A ret() x

A op() y

A ret() y

• Process subhistories are always sequential

23 of 46 - Concurrent Programming



A simplyfied model of a concurrent execution (3)

• An object subhistory H|x of a history H is the subsequence of all
events in H whose object names are x

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H|x: A op() x

B op() x

A ret() x

B ret() x

• Object subhistories are not necessarily sequential
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Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’: B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’:

B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’:

B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’: B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H:

A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’: B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H:

A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’: B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Equivalence between histories

• Two histories H and H ′ are equivalent if for every process P,
H|P = H ′|P

H: A op() x

B op() x

A ret() x

A op() y

B ret() x

A ret() y

H’: B op() x

B ret() x

A op() x

A ret() x

A op() y

A ret() y

H|A:

H’|A: A op() x

A ret() x

A op() y

A ret() y

H|B:

H’|B: B op() x

B ret() x

25 of 46 - Concurrent Programming



Correctness Conditions

• A concurrent execution is correct if it is equivalent to a correct
sequential execution

⇒ A history is correct if it is equivalent to a sequential history which
satisfies a set of correctness criteria

• A correctness condition specifies the set of correctness criteria

⇒ In order to implement correctly a concurrent object wrt a
correctness condition, a programmer have to guarantee that every
possible history on his implementation satisfies the correctness
criteria
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Sequential Consistency [Lamport 1970]

• A history is sequentially consistent if it is equivalent to a sequential
history which is correct according to the sequential definition of the
objects

• An object is sequentially consistent if every valid history associated
with its usage is sequentially consistent
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Sequential Consistency [Lamport 1970] (Example 1)

• x is a FIFO queue with Enqueue (Enq) and Dequeue (Deq)
operations

• Is the history H sequentially consistent?

Yes!

H: A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq() x

B ret(2) x

H’: B Enq(2) x

B ret() x

A Enq(1) x

A ret() x

B Deq() x

B ret(2) x
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Sequential Consistency [Lamport 1970] (Example 2)

• The composition of sequentially consistent histories is not
necessarily sequential consistent

H: 1. A Enq(1) x

2. A ret() x

3. A Enq(1) y

4. A ret() y

5. B Enq(2) y

6. B ret() y

7. B Enq(2) x

8. B ret() x

9. A Deq() x

10. A ret(2) x

11. B Deq() y

12. B ret(1) y

H|x: A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

A Deq() x

A ret(2) x

H|y: A Enq(1) y

A ret() y

B Enq(2) y

B ret() y

B Deq() y

B ret(1) y
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Linearizability [Herlihy 1990]

• A concurrent execution is linearizable if:
◦ Each procedure appears to be executed in an indivisible point

(linearization point between its invocation and completition
◦ The order among those points is correct according to the sequential

definition of objects
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Linearizability [Herlihy 1990] (Example 1)

A

B

Enq(1)

Enq(2) Deq(2)
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Linearizability [Herlihy 1990] (2)

• A history H is linearizable if it is equivalent to sequential history S
such that:
◦ S is correct according to the sequential definition of objects (H is

sequential consistent)
◦ If a response precedes an invocation in the original history, then it

must precede it in the sequential one as well

• An object is linearizable if every valid history associated with its
usage can be linearized
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Linearizability [Herlihy 1990] (Example 2)

• Is the history H is linearizable?

No!

H: A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq() x

B ret(2) x
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Linearizability [Herlihy 1990] (Example 2)
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Linearizability [Herlihy 1990] (Example 2)

• Is the history H ′ is linearizable?

Yes!

H: A Enq(1) x

B Enq(2) x

A ret() x

B ret() x

B Deq() x

B ret(2) x

H’: B Enq(2) x

B ret() x

A Enq(1) x

A ret() x

B Deq() x

B ret(2) x

34 of 46 - Concurrent Programming



Linearizability [Herlihy 1990] (Example 2)

• Is the history H ′ is linearizable? Yes!

H: A Enq(1) x

B Enq(2) x

A ret() x

B ret() x

B Deq() x

B ret(2) x

H’: B Enq(2) x

B ret() x

A Enq(1) x

A ret() x

B Deq() x

B ret(2) x
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Linearizability Properties

• Linearizability requires:
◦ Correctness with objects semantic (as Sequential Consistency)
◦ Real-time order

• Linearizability ⇒ Sequential Consistency

• The composition of linearizable histories is still linearizable
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Quick look on transaction correctness conditions

• We can see a transaction as a set of procedures on different object
that has to appear as atomic

• Serializability requires that transactions appear to execute
sequentially, i.e., without interleaving.
◦ A sort of sequential consistency for multi-object atomic procedures

• Strict-Serializability requires the transactions’ order in the
sequential history is compatible with their precedence order
◦ A sort of linearizability for multi-object atomic procedures
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Quick look on transaction correctness conditions (2)

Serializability

Strict
Serializability

Sequential
Consistency

Linearizability
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Correctness Conditions (Incomplete) Taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a
sequential order

Y Y Y Y

Respects program
order in each thread

Y Y Y Y

Consistent with
real-time ordering

- Y - Y

Can touch multiple
objects atomically

- - Y Y

Locality - Y - -

38 of 46 - Concurrent Programming



Progress Conditions

• Deadlock-free:
Some thread acquires a lock eventually

• Starvation-free:
Every thread acquires a lock eventually

• Lock-free:
Some method call completes

• Wait-free:
Every method call completes

• Obstruction-free:
Every method call completes, if they execute in isolation
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Maximum and Minimum Progress

• Minimum Progress:
◦ Some method call completes eventually

• Maximum Progress:
◦ Every method call completes eventually

• Progress is a per-method property:
◦ A real data structure can combine blocking and wait-free methods
◦ For example, the Java Concurrency Package:

• Skiplists
• Hash Tables
• Exchangers
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Maximum and Minimum Progress

• Minimum Progress:
◦ Some method call completes eventually

• Maximum Progress:
◦ Every method call completes eventually

• Progress is a per-method property:
◦ A real data structure can combine blocking and wait-free methods
◦ For example, the Java Concurrency Package:

• Skiplists
• Hash Tables
• Exchangers
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Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Deadlock-
free
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Scheduler’s Role

Progress conditions on multiprocessors:

• Are not about guarantees provided by a method implementation

• Are about the scheduling support needed to provide maximum of
minimum progress
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Scheduler Requirements

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Deadlock-
free
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Scheduler Requirements

Non-Blocking Blocking

For everyone Nothing Thread exe-
cutes alone

No thread
locked in CS

For some Nothing No thread
locked in CS
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Dependent Progress

• A progress condition is said dependent if maximum (or minimum)
progress requires scheduler support

• Otherwise it is called independent

• Progress conditions are therefore not about guarantees provided by
the implementations

• Programmers develop lock-free, obstruction-free or deadlock-free
algorithms implicitly assuming that modern schedulers are
benevolent, and that therefore every method call will eventually
complete, as they were wait-free

44 of 46 - Concurrent Programming



Dependent Progress

• A progress condition is said dependent if maximum (or minimum)
progress requires scheduler support

• Otherwise it is called independent

• Progress conditions are therefore not about guarantees provided by
the implementations

• Programmers develop lock-free, obstruction-free or deadlock-free
algorithms implicitly assuming that modern schedulers are
benevolent, and that therefore every method call will eventually
complete, as they were wait-free

44 of 46 - Concurrent Programming



Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Deadlock-
free

• The Einsteinium of progress conditions: it does not exists in nature
and has no value

• It is known that clash freedom is a strictly weaker property than
obstruction freedom
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Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Clash-Free Deadlock-
free

• The Einsteinium of progress conditions: it does not exists in nature
and has no value

• It is known that clash freedom is a strictly weaker property than
obstruction freedom
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Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free
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Free
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• It is known that clash freedom is a strictly weaker property than
obstruction freedom
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Concurrent Data Structures

• Developing data structures which can be concurrently accessed by
more threads can significantly increase programs’ performance

• Synchronization primitives must be avoided

• Result’s correctness must be guaranteed (recall linearizability)

• We can rely on atomic operations provided by computer
architectures
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