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Concurrent data structures

• Developing data structures which can be concurrently 
accessed by multiple threads can significantly increase 
performance

• Result’s correctness must be guaranteed (recall 
linearizability)

Concurrent and parallel programming
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Set implementations
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INSERT(55)

DELETE(40)

INSERT(25)

• Set methods:
◦ insert(k)

◦ delete(k)

◦ find(k)

• Implemented as an ordered linked list



Insert algorithm
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Delete algorithm
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Delete algorithm
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Delete algorithm
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Sequential set implementation
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1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true; 
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)  
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)  
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}



INSERT(35)

Concurrent set – Attempt 1
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14

H 10 20 30 40 50

INSERT(55)

DELETE(40)

INSERT(25)

• PESSIMISTIC approach

• Synchronize via global lock



Concurrent set – Attempt 1 (SRC)
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1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true; 
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)  
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)  
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}

LOCK(&glock);

UNLOCK(&glock);



Concurrent set – Attempt 1
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Concurrent set – Attempt 1
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H 10 20 30 40 50

• PESSIMISTIC approach

• Synchronize via global lock

NO SCALABILITY!

…zZz…
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Concurrent set – Attempt 2
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INSERT(55)

DELETE(40)

INSERT(25)

• Fine-grain approach

• Each node has its own lock

• Keep two locks at a time (lock coupling):
◦ One on the current node
◦ One on its predecessor



Search algorithm
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◦ One on the current node

◦ One on its predecessor



Search algorithm

Concurrent and parallel programming
22

H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm
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• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm
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• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

• Multiple threads access the data structure simultaneously



Concurrent set – Attempt 2 (SRC)

Concurrent and parallel programming
25

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true; 
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)  
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)  
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22.
23. return res;
24.}

LOCK(&glock);

UNLOCK(&glock);

UNLOCK(&l->lock);

LOCK(&l->lock);

UNLOCK(&l->lock);
UNLOCK(&r->lock);

LOCK(&(*r)->lock);

LOCK(&(*r)->lock);
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Search algorithm
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Search algorithm
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• Allows an increased parallelism but…

• High costs for lock handover



Recap 

• Explored two blocking strategies:

1. Global (coarse-grain) lock

Concurrent and parallel programming
29

.zZz.. SHARED RESOURCE

2. (Fine-grain) Lock coupling

.zZz..

SHARED RESOURCE



Non-blocking algorithms

• We do not rely on locks for synchronization (they make our 
algorithm dependent on fairness)

Concurrent and parallel programming
30

SHARED RESOURCE

SINGLE ATOMIC INSTRUCTION:
Atomicity & Termination 
guaranteed by processor 

firmware

• How ?

• How??

By ensuring that mutual exclusion regions terminate



Read-Modify-Write

• RMW instructions allow to read memory and modify its 
content in an apparently instantaneous fashion.

Concurrent and parallel programming
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1.RMW(MRegister *r, Function f){
2. atomic{
3. old = r;
4. *r = f(r);
5. return old;
6. }
7.} 

• Even conventional atomic Load and Store can be 
seen as RMW operations



Compare-And-Swap

• Compare-and-Swap (CAS) is an atomic instruction used in 
multithreading to achieve synchronization
◦ It compares the contents of a memory area with a supplied value

◦ If and only if they are the same

◦ The contents of the memory area are updated with the new 
provided value

• Atomicity guarantees that the new value is computed 
based on up-to-date information

• If, in the meanwhile, the value has been updated by 
another thread, the update fails

• This instruction has been introduced in 1970 in the IBM 
370 trying to limit as much as possible the use of spinlocks

Concurrent and parallel programming
32



Compare-And-Swap

Concurrent and parallel programming
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1. CAS(Mregister *r, Value old_value, Value new_value f){ 
2. atomic{
3. Value res = *r;
4. if(*r == old_value) *r = new_value;
5. return res;
6. }
7. } 

• RMW instructions allow to read memory and modify its 
content in an apparently instantaneous fashion.

• CAS is implemented by x86 architectures (see CMPXCHG)

• gcc offers the __sync_val_compare_and_swap builtin



Concurrent set – Attempt 3
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Concurrent set – Attempt 3
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INSERT(55)

DELETE(40)

• NON-BLOCKING approach [Harris linked list] 

• Search without acquiring any lock

• Apply updates with individual atomic instructions



Non-blocking insert & delete algorithms
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Insert:

1. Search left and right nodes

2. Insert the new item with a CAS

3. If CAS fails restart 

H 10

20

T

left right

Delete:

1. Search left and right nodes

2. Disconnect the item with a 
CAS

3. If CAS fails restart

H 10 T

left right

CAS

CAS

INSERT(20) DELETE(10)

• Is it correct?



Incorrect delete algorithm 

Concurrent and parallel programming
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T

• Edge cases might lead to losing items!

H 10



Incorrect delete algorithm 
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left right

INSERT(20)

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10



Incorrect delete algorithm 
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Incorrect delete algorithm 
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• Edge cases might lead to losing items!

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

H 10 CAS



H

Incorrect delete algorithm 
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20

T

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

10



The correct delete algorithm 
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H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS



The correct delete algorithm 
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H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS

• Typically memory objects are byte aligned
• The LSB is always 0! BIT STEALING!!!

0xff ...  0

key

10
mark

1

next

CAS



The correct delete algorithm 
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20

left right

INSERT(20)

DELETE(10)

T

CAS

fail

• Updates of the ”next” field by two opposite concurrent operations 
cannot both succeed

• What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!



Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
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Non-blocking search
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Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches
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Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
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CAS
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Concurrent set – Attempt 3 (SRC)
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1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r);                 /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false;  /* key present in the set */
7. n->next = r;
8. l->next = n;                   /* insert the item        */
9.
10.
11. break;
12. case(DELETE):
13. if(r->key != k) return false;  /* key not present        */
14. l->next = r->next;             /* remove the key         */
15.
16.
17.
18. break;
19. }
20. return true;
21.}



Concurrent set – Attempt 3 (SRC)
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1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r);                 /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false;  /* key present in the set */
7. n->next = r;
8. l->next = n;                   /* insert the item        */
9. if(!CAS(&l->next, r, n))
10. goto 3; /* insertion failed the item -> restart */
11. break;
12. case(DELETE):
13. if(r->key != k) return false;  /* key not present        */
14. l->next = r->next;             /* remove the key         */
15. if(is_marked_ref((l=r->next)) || !CAS(&r->next, l, mark(l)))
16. goto 3; /* insertion failed the item -> restart */
17. search(k,&r); /* repeat search          */
18. break;
19. }
20. return true;
21.}



Concurrent set – Attempt 3 (SRC)

1. node* search(int k, node **r){

2. node *l, *t, *t_next, *l_next;

3. *t = set->head;

4. t_next = t->head->next;

5. while(1){                        /* FIND LEFT AND RIGHT NODE */

6. if(!is_marked(t_next)){

7. l = t;

8. l_next = t_next;

9. }

10. t = get_unmarked_ref((t_next);

11. t_next = t->next;

12. if(!is_marked_ref(t_next) && t->key >= k) break;

13. }

14. *r = t; 

15. /* DEL MARKED NODES */

16. if(l_next != *r && !CAS(&l->next, l_next, *r) goto 3;

17. return l;

18.}
Concurrent and parallel programming
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Safety and liveness guarantees

• The algorithm is NON-BLOCKING (LOCK-FREE):
◦ If a thread A is stuck in a retry loop => a CAS fails each time

◦ If a CAS fail, it is because of another CAS that was successfully 
executed by a thread B

◦ Thread B is making progress

• The algorithm is LINEARIZABLE:
◦ Each method execution take effect in an atomic point (a 

successful CAS) contained between its invocation and reply

◦ The order obtained by using these points has been proved to be 
compliant with the Set semantic

Concurrent and parallel programming
53



Problems & Solutions

• Problems arise when re-using memory:
◦ The CAS suffers from the ABA problem

◦ We might reuse a node which is concurrently accessed by 
another thread (e.g. during a search)

• Solutions:
1. Use a tag that changes every time a field has been update 

(even when overwritten with the same value)
• Pros: easy to implement

• Cons: ABA might still occur, but with low probability

2. Adopt garbage collectors that enable safe memory reusage
• Pros: solve all problems

• Cons: Hard to implement efficiently

Concurrent and parallel programming
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Can we do better?

• Starting from this “simple” set implementation we can 
build faster set implementations
◦ Skip lists (O(logn))

◦ Hash tables (O(1)) 

• Most of them are based on similar techniques:
◦ use a linked list

◦ build an index on top of it to accelerate look ups

Concurrent and parallel programming
55

H 10 20 30 40 50 T

H 10 30 50 T

H 30 T



Concurrent and parallel programming
56

Concurrent 
Data Structures:

Non-blocking stacks



POP()

Stack implementation

Concurrent and parallel programming
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H d c e T

PUSH(g)

POP()

PUSH(b)

• Stack methods:
◦ push(v)

◦ pop()

• Implemented as a linked list



POP()

Concurrent stack implementations

Concurrent and parallel programming
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H d c e T

PUSH(g)

POP()

PUSH(b)

• Resort to a global lock
◦ Do not scale

• Resort to a non-blocking approach



Non-blocking stack – Attempt 1 [Treiber]
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Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart 

H T

Delete:

1. Get head next 

2. Disconnect the item with a 
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS



Non-blocking stack – Attempt 1 [Treiber]
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Non-blocking stack – Attempt 2 [Treiber+BO]
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Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart 

H T

Delete:

1. Get head next 

2. Disconnect the item with a 
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

backoff
and restart backoff

and restart



Non-blocking stack – Attempt 2 [Treiber+BO]
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Concurrent stack implementations
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H d c e T

PUSH(g)

POP()

• Resort to a global lock
◦ Do not scale

• Resort to a naïve non-blocking approach
◦ Do not scale

• Resort to a naïve non-blocking approach + Back off
◦ Do not scale, but conflict resilient

• How achieve scalability? Make back-off times useful



Non-blocking stack – Attempt 3

Concurrent and parallel programming
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H d c e T

• How to take advantage of back-off times?

PUSH(g)



Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent and parallel programming
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Push(3)

B

A

Pop()(3)

• A push A and a pop B are:
◦ concurrent to each other

◦ B returns the item inserted by A

we can always take two points such that:
◦ A is the last one to insert an item before A linearizes

◦ B appears to extract the last item inserted (by A)

nothing happens here



Non-blocking stack – Attempt 3
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H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

PUSH(g)

POP()



Non-blocking stack – Attempt 3
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H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

• How??



Non-blocking stack – Elimination stack
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• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

Treiber Stack

PUSH(g)
CAS

fail
POP()



Non-blocking stack – Elimination stack
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• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

3. Wait for a matching operation

4. If no matching op, GOTO 1

Treiber Stack

POP()

PUSH(h)

POP()

POP()

PUSH(k)



Non-blocking stack – Attempt 3
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Concurrent and parallel programming
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Concurrent 
Data Structures:

Non-blocking priority queues



Priority queue implementations

Concurrent and parallel programming
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• Priority Queue methods:
◦ enqueue(k): adds a new item

◦ dequeue(): returns and remove the highest priority item

• Implemented as an ordered linked list

ENQ(35)

ENQ(55)

DEQ()

ENQ(25)

This is a huge simplification.
Typically they are implemented as 

skip-lists (log(n)) or calendar queues 
(O(1))

H T0.1 1.3 5.0 6.5 7.1 9.8



Priority queue – Attempt 1

• Enqueue: works as insertions in the non-blocking Set
◦ Connect via CAS

• Dequeues: work as deletions in the non-blocking Set
◦ Mark as logically deleted, but

◦ DISCONNECT IMMEDIATELY

• Is it scalable?

Concurrent and parallel programming
73

H T0.1 1.3 5.0 6.5 7.1 9.8

8

CAS

CAS

CAS



Priority queue – Attempt 1

Concurrent and parallel programming
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Scalability
collapse



Priority queues: an inherently “sequential” semantic

• Enqueue offers a high level of disjoint access parallelism

• Dequeues are prone to conflicts

                      

       

H

Concurrent and parallel programming
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This region is highly shared 
among processors’ caches



Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Concurrent and parallel programming
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Concurrent and parallel programming
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Concurrent and parallel programming
82

H T1.3 5.0 7.1 9.86.50.1

Enq(0.1)

B

A
Deq()

Enq(6.5)



Lazy deletion within priority queues
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions
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Non-linearizable 
extraction

Enq(0.1)

B

A
Deq()

Enq(6.5)

Ret 6.5



Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there 
are two main approaches

1. Move the logical mark of a node in the field “next” of its 
predecessor

Concurrent and parallel programming
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Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there 
are two main approaches

1. Move the logical mark of a node in the field “next” of its 
predecessor
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Correct lazy deletion within priority queues
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PQ – Attempt 2 - Introducing Conflict Resiliency 

• Lazy deletion

• Skip logically deleted items   IT INCREASES THE NUMBER OF STEPS

• Periodic Housekeeping

This technique is adopted by:
State-of-the-art skip list (NBSL) [Lin13]
Conflict Resilient Calendar Queue (CRCQ) = NBCQ + conflict resiliency

                      

#deleted items> threshold
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 EXPENSIVE IN TERMS OF IMPACT ON CACHE



Priority queue – Attempt 2
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On the conflict resiliency trade off
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• The number of steps per dequeue and costs of 
housekeeping are dependent:

THRESHOLD⇒ READ
LATENCY

and
RMW

IMPACT

and
RMW

IMPACT
THRESHOLD⇒ READ

LATENCY



Conflict resiliency trade offs
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Priority queues – Attempt 3
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Open challenges

How to achieve scalability for priority queues?

• NO ANSWER for correct priority queue

• The research moved on looking for RELAXED SEMANTICS 
for priority queues
◦ Enable scalability for extractions by removing an item which is 
“near” the minimum

• Explore orthogonal approaches by guaranteeing RELAXED 
CORRECTNESS CONDITIONS
◦ K-linearizability

◦ Quasi-linearizabilty

◦ Sequential consistency?

• Explore new hardware capabilities (e.g. HTM)

Concurrent and parallel programming
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