Concurrent and parallel

programming

S APIENZA 2019/2020

UNIVERSITA DI ROMA Romolo Marotta

N
&=
AL

Concurrent
Data Structures

Concurrent
Data Structures:
sets

Concurrent data structures

* Developing data structures which can be concurrently
accessed by multiple threads can significantly increase
performance

e Result’s correctness must be guaranteed (recall
linearizability)

Concurrent and parallel programming
4

Set iImplementations

* Set methods:
o insert(k)
o delete(k)
—firdHo—

* Implemented as an ordered linked list

(INSERT(35))

(INSERT(25))
(DELETE(40))
(INSERT(55))

(1] J—{(a0] J—{20] J{30 440 JHs0| F{r] |

Concurrent and parallel programming
)

Insert algorithm

(INSERT(55))

Concurrent and parallel programming

Insert algorithm

Co

%

left

right

[

\ ¢

3

\ ¢

3 (a0

J 0

{4

Eatl

Ealtl

Insert algorithm

CsD
s

left right

4y 3

(1] F—(a0] J—{20] J{30 H{40] J{so +(r]]

Insert algorithm

%

left right

4y 3

J—{10] J—(20] J{30] J—{a0] J{s0] J—s5

—7

Concurrent and parallel programming

Delete algorithm

(DELETE(40))

(H| 10

3 (a0

J 0

Concurrent and parallel programming

Delete algorithm

(>
s

left right

4y 3

(1] J—(a0] J—{20] J30 H{40] Jos0| H{r] |

Delete algorithm

right

(1] o 320 F{3q 5 sol {7

Concurrent and parallel programming

Sequential set Iimplementation

OLoOoNOTUVTE, WN PR

R R
P ® -

=
N

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.}

bool do operation(int k, int op_ type){

bool res = true;
node *1,*r;

1 = search(k, &r);
switch(op_type){
case(INSERT):
if(r->key == k)
res = false;
else
1->next = new node(k,r);
break;
case(DELETE):
if(r->key == k)
1->next = r->next;
else
res = false;
break;

return res;

Concurrent and parallel programming

. node* search(int k, node **pr){

node *1, *r next;
1 = set->head;

*r = 1->next;

r_next = (*r)->next;
while((*r)->key < k){

r_next = (*r)->next;

}

Concurrent set — Attempt 1

* PESSIMISTIC approach
* Synchronize via global lock

(INSERT(35))

(INSERT(25))
(DELETE(40))

(INSERT(55) H 1

}(ao

Iz

L[H {10

{4

Concurrent and parallel programming

Concurrent set — Attempt 1 (SRC)

1. bool do operation(int k, int op_type){ 1. node* search(int k, node **r){
2. bool res = true; 2. node *1, *r next;

3. node *1,*r; 3. 1 = set->head;

4. LOCK(&glock); 4.

5. 1 = search(k, &r); 5. *r = 1->next;

6. switch(op type){ 6.

7. case(INSERT): 7. r_next = (*r)->next;
8. if(r->key == k) 8. while((*r)->key < k){
9. res = false; L9,

10. else E 10. 1 = *r;

11. 1->next = new node(k,r); 11, *r = r next;

12. break; 12,

13. case(DELETE): . 13. r_next = (*r)->next;
14. if(r->key == k) 14, }

15. 1->next = r->next; . 15.}

16. else |

17. res = false;

18. break;

19. }

20. UNLOCK(&glock);

21.

22. return res;

23.}

Concurrent and parallel programming

Concurrent set — Attempt 1

AMD Opteron 6128 —32Cores
Update=100%

KeyRange = [0,6000] SetSize = 2400

140
120
100
80
wv
o
(@]
4
60
40
20
0
0 8 16 24 32
H#Threads
— PESSIMISTIC

Concurrent and parallel programming

Concurrent set — Attempt 1

(INSERT(5))

{10

Iz

E

{4

Concurrent set — Attempt 1

* PESSIMISTIC approach
* Synchronize via global lock
—>NO SCALABILITY!

Concurren t and parallel programming

Concurrent set — Attempt 2

* Fine-grain approach
e Each node has its own lock

* Keep two locks at a time (lock coupling):
o One on the current node
o One on its predecessor

(INSERT(35))

(INSERT(25))
(DELETE(40))

(INSERT(55))

|OF JEF R SCF CPACE 1aP

Concurrent and parallel programming

Search algorithm

(INSERT(55))

Search algorithm

* Keep two locks at a time (lock coupling):
o One on the current node
> One on its predecessor

(INSERT(55)) @

right

left

$
Ca

| R

Co

\ ¢

| R

20

Bt

Concurrent and parallel programming

Search algorithm

* Keep two locks at a time (lock coupling):
o One on the current node
> One on its predecessor

(INSERT(55)) @

left right

4y 3

(W 0 (0] 3 (o] (30 3 F-(s0

Yo,
‘e °
.
a, .
L]

Concurrent and parallel programming

Search algorithm

* Keep two locks at a time (lock coupling):
o One on the current node
> One on its predecessor

(INSERT(55)) @

left right

4y 3

(W] (0] 3 (o (30 3 3-(50

1] |2

Yo,
‘e °
.
a, .
L]

Concurrent and parallel programming

Search algorithm

* Keep two locks at a time (lock coupling):
o One on the current node
> One on its predecessor

* Multiple threads access the data structure simultaneously

GED &
c C

left right left right
4 3 4
far+ = (CRECERTEACY . |

(2] & X (%

Concurrent and parallel programming

Concurrent set — Attempt 2 (SRC)

1. bool do operation(int k, int op_type){ 1. node* search(int k, node **r){
2. bool res = true; 2. node *1, *r next;

3. node *1,*r; 3. 1l = set->head;

4. =—mSEHetmiereiey— 4. LOCK(&l->lock);

5. 1 = search(k, &r); 5. *r = 1->next;

6. switch(op_type){ 6. LOCK(&(*r)->lock);
7. case(INSERT): 7. r_next = (*r)->next;
8. if(r->key == k) 8. while((*r)->key < k){
9. res = false; 9. UNLOCK(&1->1ock);
10. else E 10. 1 = *r;

11. 1->next = new node(k,r); 11, *r = r_next;

12. break; 12, LOCK(&(*r)->1lock);
13. case(DELETE): . 13. r_next = (*r)->next;
14. if(r->key == k) 14, }

15. 1->next = r->next; . 15.}

16. else |

17. res = false;

18. break;

19. }

20. Gl Ein e
21. UNLOCK(&l->lock);
22. UNLOCK(&r->lock);

23. return res;
/ Concurrent and parallel programming

Concurrent set — Attempt 2

AMD Opteron 6128 —32Cores
Update=100%

KeyRange = [0,6000] SetSize = 2400

140
120
100
wv
o
(@]
4
40
20
0
0 8 16 24 32
H#Threads

——PESSIMISTIC
CHAINED

Concurrent and parallel programming

Search algorithm

* Allows an increased parallelism but...

left right

\ ¢

H 10— 293 30] (20|50 @%
1 X UR] ([R] (2R |1 1

Concurrent and parallel programming

Search algorithm

* Allows an increased parallelism but...
* High costs for lock handover

Concurrent and parallel programming

Recap

* Explored two blocking strategies:

1. Global (coarse-grain) lock

SHARED RESOURCE
)t I)

© i

2. (Fine-grain) Lock coupling

SHARED RESOURCE

& 12 1)

o | & A%

Concurren t and parallel programming

Non-blocking algorithms

* We do not rely on locks for synchronization (they make our
algorithm dependent on fairness)

* How ? By ensuring that mutual exclusion regions terminate

e How??

(SINGLE ATOMIC INSTRUCTION:\

SHARED RESOURCE Atomicity & Termination
r@ ﬁ guaranteed by processor
J {

firmware Y
i (&

Concurrent and parallel programming

Read-Modify-Write

* RMW instructions allow to read memory and modify its
content in an apparently instantaneous fashion.

1.RMW(MRegister *r, Function f){
2. atomic{

3. old = r;

4. *r = f(r);

5 return old;

6
7.

.
}

* Even conventional atomic Load and Store can be
seen as RMW operations

Concurrent and parallel programming

Compare-And-Swap

* Compare-and-Swap (CAS) is an atomic instruction used in
multithreading to achieve synchronization
° |t compares the contents of a memory area with a supplied value
o If and only if they are the same

o The contents of the memory area are updated with the new
provided value

e Atomicity guarantees that the new value is computed
based on up-to-date information

* If, in the meanwhile, the value has been updated by
another thread, the update fails

e This instruction has been introduced in 1970 in the IBM
370 trying to limit as much as possible the use of spinlocks

Concurrent and parallel programming

Compare-And-Swap

* RMW instructions allow to read memory and modify its
content in an apparently instantaneous fashion.

1. CAS(Mregister *r, Value old value, Value new value f){
2 atomic{

3 Value res = *r;

4. if(*r == old value) *r = new_value;

5 return res;

6. }

7.}

* CAS is implemented by x86 architectures (see CMPXCHG)
e gcc offersthe _ _sync_val compare _and swap builtin

Concurrent and parallel programming

Concurrent set — Attempt 3

(DELETE(40))

(INSERT(55))

Concurrent set — Attempt 3

* NON-BLOCKING approach [Harris linked list]
* Search without acquiring any lock

* Apply updates with individual atomic instructions

(DELETE(40))

(INSERT(55))

{10

}(ao

Iz

E

{4

Concurrent and parallel programming

Non-blocking insert & delete algorithms

Insert: Delete:
1. Search left and right nodes 1. Search left and right nodes
2. Insert the new item with a CAS 2. Disconnect the item with a

3. If CAS fails restart CAS
3. If CAS fails restart

left .
right left right

M L4 3 3

(H] 10 fj il (10] (7]
* ,
) 20

(INSERT(20) (DELETE(10))

* |s it correct?

Concurrent and parallel programming

Incorrect delete algorithm

* Edge cases might lead to losing items!

CER

[~
u

Concurrent and parallel programming

Incorrect delete algorithm

* Edge cases might lead to losing items!

(] o Ul
(INSERT(20)) t t

left right

—

Thread A gets left and right node and go to sleep
Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

e

Concurrent and parallel programming

Incorrect delete algorithm

* Edge cases might lead to losing items!

(DELETE(10))

S
(1[5 1)

(INSERT(20)) t t

left right

Thread A gets left and right node and go to sleep
Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

e

Concurrent and parallel programming

Incorrect delete algorithm

* Edge cases might lead to losing items!

(DELETE(10))

ﬁE/A\S/I/\

[H %“illo CAS T j
(INSERT(20)) t ZOﬁ

left right

Thread A gets left and right node and go to sleep
Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

e

Concurrent and parallel programming

Incorrect delete algorithm

* Edge cases might lead to losing items!

oE s
T—

Thread A gets left and right node and go to sleep

Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

e

Concurrent and parallel programming

The correct delete algorithm

* Adopt logical deletion:

Get left and right node

Mark the item as deleted via CAS (logical deletion)
If CAS fails GOTO 1

Disconnect the item via CAS (physical deletion)

If CAS fails GOTO 4

Al S

R

Concurrent and parallel programming

The correct delete algorithm

10 .

1
1 mark

J

_

* Typically memory objects are byte aligned
e The LSB is always 0! BIT STEALING!!!

Concurrent and parallel programming

The correct delete algorithm

(DELETE(10))

(H

(INSERT(20))

an
S

left right

* Updates of the ”next” field by two opposite concurrent operations
cannot both succeed

* What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!

Concurrent and parallel programming

Non-blocking search

* The search returns two adjacent non-marked (left and right)
nodes

* Housekeeping: disconnect logically delete items during searches

(1] F—{(a0] J—{2006—309€{40] F{s0 H{7]| |

Concurrent and parallel programming

Non-blocking search

* The search returns two adjacent non-marked (left and right)
nodes

* Housekeeping: disconnect logically delete items during searches

s

4 3
| o] 3 206{30d& 2o +{s0] J{r|]

[

Concurrent and parallel programming

Non-blocking search

* The search returns two adjacent non-marked (left and right)
nodes

* Housekeeping: disconnect logically delete items during searches

left right

4 4
(1] F—{(a0] J—{2006—309€{40] F{s0 H{7]| |

Concurrent and parallel programming

Non-blocking search

* The search returns two adjacent non-marked (left and right)
nodes

* Housekeeping: disconnect logically delete items during searches

=

left right

$ $
W) (R 0 (I)-(39 (7]

Concurrent and parallel programming

Concurrent set — Attempt 3 (SRC)

1. bool do_operation(int k, int op_type){

2. node *1,*r, *n = new node(k);

3. 1 = search(k, &r); /* get left and right node */
4. switch(op_type){

5. case(INSERT):

6. if(r->key == k) return false; /* key present in the set */

7. n->next = r;

8. 1->next = n; /* insert the item */

9.

10.

11. break;

12. case(DELETE):

13. if(r->key != k) return false; /* key not present */
14. 1->next = r->next; /* remove the key */
15.

16.

17.

18. break;

19. }

20. return true;

21. Concurrent and parallel programming

Concurrent set — Attempt 3 (SRC)

1. bool do_operation(int k, int op_type){

2. node *1,*r, *n = new node(k);

3. 1 = search(k, &r); /* get left and right node */
4. switch(op_type){

5. case(INSERT):

6. if(r->key == k) return false; /* key present in the set */

7. n->next = r;

8. 22 2 S /* insert the item */

9. if(!CAS(&1l->next, r, n))

10. goto 3; /* insertion failed the item -> restart */

11. break;

12. case(DELETE):

13. if(r->key != k) return false; /* key not present */

14. el el @y /* remove the key */

15. if(is_marked _ref((l=r->next)) || !'CAS(&r->next, 1, mark(l)))
16. goto 3; /* insertion failed the item -> restart */

17. search(k,&r); /* repeat search */

18. break;

19. }

20. return true;

21. Concurrent and parallel programming

Concurrent set — Attempt 3 (SRC)

1. node* search(int k, node **r){

2. node *1, *t, *t next, *1 next;

3. *t = set->head;

4. t _next = t->head->next;

5. while(1){ /* FIND LEFT AND RIGHT NODE */
6. if(!is_marked(t_next)){

7. 1l =t;

8. 1 next = t_next;

9. }

10. t = get unmarked ref((t_next);

11. t _next = t->next;

12. if(!is_marked ref(t _next) && t->key >= k) break;
13. }

14. *r = t;

15. /* DEL MARKED NODES */

16. if(l _next != *r & & !CAS(&l->next, 1 next, *r) goto 3;
17. return 1;
18.}

Concurrent and parallel programming

Concurrent set — Attempt 3

AMD Opteron 6128 —32Cores
KeyRange = [0,6000] SetSize = 2400 Update=100%

1600
1400
1200
1000

800

KOps

600

400

200

0 8 16 24 32
H#Threads
—— PESSIMISTIC CHAINED

LOCK-FREE

Concurrent and parallel programming

Safety and liveness guarantees

* The algorithm is NON-BLOCKING (LOCK-FREE):

o If a thread A is stuck in a retry loop => a CAS fails each time

o |f a CAS fail, it is because of another CAS that was successfully
executed by a thread B

o Thread B is making progress

* The algorithm is LINEARIZABLE:

o Each method execution take effect in an atomic point (a
successful CAS) contained between its invocation and reply

o The order obtained by using these points has been proved to be
compliant with the Set semantic

Concurrent and parallel programming

Problems & Solutions

* Problems arise when re-using memory:
o The CAS suffers from the ABA problem

° We might reuse a node which is concurrently accessed by
another thread (e.g. during a search)

e Solutions:

1. Use atagthat changes every time a field has been update
(even when overwritten with the same value)

* Pros: easy to implement
e Cons: ABA might still occur, but with low probability
2. Adopt garbage collectors that enable safe memory reusage

* Pros: solve all problems
e Cons: Hard to implement efficiently

Concurrent and parallel programming

Can we do better?

e Starting from this “simple” set implementation we can
build faster set implementations
o Skip lists (O(logn))
o Hash tables (O(1))

* Most of them are based on similar techniques:

o use a linked list
o build an index on top of it to accelerate look ups

T T T
H 30 T

| 1

‘H| +{10 4 30 (5ol 1|

1] J—o] J—{20] J{30] J—{a0] J{s0 FH1]

Concurrent and parallel programming

Concurrent
Data Structures:
Non-blocking stacks

Stack implementation

 Stack methods:
o push(v)
° pop()
* Implemented as a linked list

(" popr())
(" PUSH(b))

(" pop))
(" PUSH(g))

] e[e [e[FHr]

Concurrent and parallel programming

Concurrent stack implementations

* Resort to a global lock
° Do not scale

* Resort to a non-blocking approach

(" popr())
(" PUSH(b))

(" pop))
(" PUSH(g))

] e[e [e[FHr]

Concurrent and parallel programming

Non-blocking stack — Attempt 1 [Trelber]

Push: Delete:
1. Get head next 1. Get head next
2. Insertthe new item witha CAS 2. Disconnect the item with a

3. If CAS fails, restart CAS
3. If CAS fails, restart

(" PUSH(a)) ‘

(" pop)) ‘

e |s it scalable?

Concurrent and parallel programming

Non-blocking stack — Attempt 1 [Trelber]

Throughput
8000

7000
6000 -
5000
4000 -
3000

2000 1 Treiber
1000

1 2 4 8 14 32
Threads

Number of operation
per second

Concurrent and parallel programming

Non-blocking stack — Attempt 2 [Treiber+BO]

Push: Delete:
1. Get head next 1. Get head next
2. Insertthe new item witha CAS 2. Disconnect the item with a

3. If CAS fails, restart backoff CAS
and restart 3. If CAS fails, resta+st backoff

and restart

(" PUSH(a)) ‘

(" pop)) ‘

e |s it scalable?

Concurrent and parallel programming

Non-blocking stack — Attempt 2 [Treiber+BO]

Throughput
8000

7000
6000 -
5000
4000 -
3000
2000 -
1000

Treiber with backoff

Number of operation
per second

Concurrent and parallel programming

Concurrent stack implementations

* Resort to a global lock
o Do not scale

e Resort to a naive non-blocking approach
o Do not scale

* Resort to a naive non-blocking approach + Back off
o Do not scale, but conflict resilient

* How achieve scalability? Make back-off times useful

(" pop))
(" PUSH(g))

] e[e [e[FHr]

Concurrent and parallel programming

Non-blocking stack — Attempt 3

* How to take advantage of back-off times?

Concurrent and parallel programming

Observation

* Concurrent matching push/pop pairs are always linearizable

B, | M Pop()‘i‘B) | i
| o
t

nothing happens here

* A push A and a pop B are:
o concurrent to each other
o B returns the item inserted by A

—> we can always take two points such that:
o A'is the last one to insert an item before A linearizes
o B appears to extract the last item inserted (by A)

Concurrent and parallel programming

Non-blocking stack — Attempt 3

* How to take advantage of back-off times?
* Hope that an opposite operation arrives while waiting
* Match the two without interacting with the stack

(" PUSH(g))’

@] e[e [e[FHr]

Concurrent and parallel programming

Non-blocking stack — Attempt 3

* How to take advantage of back-off times?
* Hope that an opposite operation arrives while waiting
* Match the two without interacting with the stack

e How??

] e[e [e[FHr]

Concurrent and parallel programming

Non-blocking stack — Elimination stack

* Pair the Treiber stack with an array

* Algorithm:
1. Update the original stack via CAS
2. If CAS fails, publish the operation in a random cell of the array

(pop))

fail

Treiber Stack

CAS
(" PUSH(g))

Concurrent and parallel programming

Non-blocking stack — Elimination stack

* Pair the Treiber stack with an array

* Algorithm:
1. Update the original stack via CAS
2. If CAS fails, publish the operation in a random cell of the array
3. Wait for a matching operation
4. If no matching op, GOTO 1

C pop() Q
(PUSH(h))/:/:9

C pop) ——] ’ Treiber Stack
)—— ? _

@ >
_.O’/

(' PUSHK) r— |

Concurrent and parallel programming

Non-blocking stack — Attempt 3

Throughput
8000

7000
6000 -
5000 Elimination Stack
4000 -
3000
2000 -
1000

Treiber with backoff

Number of operation
per second

Concurrent and parallel programming

Concurrent

Data Structures:
Non-blocking priority queues

Priority queue implementations

* Priority Queue methods:
o enqueue(k): adds a new item
° dequeue(): returns and remove the highest priority item

* Implemented as an ordered linked list 4—‘

~

J

é This is a huge simplification.
(ENQ(35)) Typically they are implemented as
skip-lists (log(n)) or calendar queues
(_ENQ(25)) X (0(1))
(_pEq)))
(_ENQ(s5))

oo —{es () —(ss} {7

Concurrent and parallel programming

Priority queue — Attempt 1

* Enqueue: works as insertions in the non-blocking Set
o Connect via CAS

* Dequeues: work as deletions in the non-blocking Set

o Mark as logically deleted, but
o DISCONNECT IMMEDIATELY

 |s it scalable?

Concurrent and parallel programming

Priority queue — Attempt 1

Queue Size = 256000

6 | E | | | 1
PR E . 7
a ; Scalability
5 : collapse
o 4r : n
) :

Throughput
B
I

0 L | | E | | | | | | | | |
0O 4 8 12 1o 20 24 28 32 36 40 44 48

#Threads

Concurrent and parallel programming

Priority queues: an inherently “sequential” semantic

* Enqueue offers a high level of disjoint access parallelism
* Dequeues are prone to conflicts

This region is highly shared
among processors’ caches

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Al >

Deq()

B 1] :

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Al >

Deq()

B 1] :
e/

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Al >

Deq()

B 1] :
)

H 113 5.0 17198 T

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Al >

Deq()

B 1] :
)

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

AI | Eng(0.1)
Deq()

B 1] :
)

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

AI | Eng(0.1)
Deq()

B 1] :
)

oo —{s (s

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5)
Deq()

B 1] :
)

oo —{s (s

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5)
Deq()

B 1] :
)

o3 —(e5) (a7

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5)
Deq()

B 1] :
)

o3 —(os) (a7

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5)
Deq()

B 1] :
)

o (3 — (a7

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5) |

Deq() Ret 6.5

BH F’
i

o (3 — (a7

Concurrent and parallel programming

Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

N | Eng(0.1) | | Enqg(6.5) |

Deq() Ret 6.5

.T

Non-linearizable
extraction

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

()G

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

Ts=0 Ts=0 Ts=0 Ts=0 Ts=0

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

H {13 5.0 {71 9.8 T

Ts=0 Ts=0 Ts=0 Ts=0 Ts=0

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

G

3 5.0
0 Ts=0 Ts=0 Ts=0

Ts=0 Ts

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

Ts=0 Ts=0 Ts=0 Ts=0 Ts=0 Ts=0

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

= Ts=0 =

/Iy:tf Ts=0 Te=0 Ts=0 Ts=0

Ts=1

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

(oo a3

/Iy:tf Ts=0 Te=0 Ts=0 Ts=1 Ts=0 Ts=0
Ts=1

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

H o1 | D—{ ¥ }—1es —{71}—{os}—| T
/Iy:tf Ts=0 Ts=0 Ts=0 Ts=1 Ts=0 Ts=0

Ts=1

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

%

H o1 | D—{ ¥ }—1es —{71}—{os}—| T
/Iy:tf Ts=0 Ts=0 Ts=0 Ts=1 Ts=0 Ts=0

Ts=1

Concurrent and parallel programming

Correct lazy deletion within priority queues

* To implement correct extractions with lazy deletions there are
two main approaches

2. Use logical timestamps:
° incremented each time a new minimum has been inserted
o extract item compatible with the timestamp read at the beginning

Concurrent and parallel programming

PQ — Attempt 2 - Introducing Conflict Resiliency

* Lazy deletion
 Skip logically deleted items => IT INCREASES THE NUMBER OF STEPS
* Periodic Housekeeping = EXPENSIVE IN TERMS OF IMPACT ON CACHE

H#Hdeleted items> threshold

< D
i L' (=
/

Innovative Concurrent Data Structures and Synchronization Supports in Multi-core Platforms

Priority queue — Attempt 2

Queue Size = 256000
6 | | | | | |
oAl -
~
3,
4_]
= 5—f
3_ .]
SLCQ VAN
NBCOQ O
CRCO-96 []

Throughput
B
I

O | | I | | | |

#Threads

Concurrent and parallel programming

12 16 20 24 28 32 36 40 44 48

On the conflict resiliency trade off

* The number of steps per dequeue and costs of
housekeeping are dependent:

READ RMW

THRESHOLD =) * *
* LATENCY @ and Y impacT
READ RMW

THRESHOLD —) * *
* LATENCY @ and A mpacT

Concurrent and parallel programming

Conflict resiliency trade offs

Queue Size = 2560000

1.00
th =1*#Threads 1536
th =2*#Threads
| th=3*$Threads 768 0.95
G 384
I8
- 192 0.90
e 96
—
o 48
S 24
0 0.00
() 12
“
G 6
-
3

13 6 12 18 24 30 36 42 48
#Threads

Concurrent and parallel programming

Priority queues — Attempt 3

Queue Size = 2560000

| | | | | | |
4 -]
w 3.5 | -
~
[6)]
Q, 3 F n
O
=
~ 2.5 F N
|
~ o | NBCOQ O
% CRCQ-96
ACRC
3 1.5} ’ -
)
q2 1t |
[_|
0.5 F n
| | | | | | | | | | | | |

0 4 8 12 1o 20 24 28 32 36 40 44 48
#Threads

Concurrent and parallel programming

Open challenges

How to achieve scalability for priority queues?
* NO ANSWER for correct priority queue

* The research moved on looking for RELAXED SEMANTICS
for priority queues
o Enable scalability for extractions by removing an item which is
“near” the minimum

* Explore orthogonal approaches by guaranteeing RELAXED
CORRECTNESS CONDITIONS
o K-linearizability
o Quasi-linearizabilty
o Sequential consistency?

e Explore new hardware capabilities (e.g. HTM)

Concurrent and parallel programming

Recommended readings

* A pragmatic implementation of non-blocking linked-lists
T. L. Harris, International Symposium on Distributed
Computing, 2001.

e Systems programming: Coping with parallelism
R K Treiber, IBM Almaden Research Center, 1986.

* A Scalable Lock-free Stack Algorithm
D. Hendler et al, SPAA’0A4.

* A Skiplist-Based Concurrent Priority Queue with Minimal
Memory Contention
J. Lindén et al, ICPDS’2013

* A Conflict-Resilient Lock-Free Calendar Queue for Scalable
Share-Everything PDES Platforms
R. Marotta et al, PADS’2017

Concurrent and parallel programming

