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Correctness conditions
Progress conditions

Performance



Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a 
sequential order

Respects program order
in each thread

Consistent with 
real-time ordering

Access multiple objects 
atomically

Locality
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Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Concurrent and parallel programming
4

• The Einsteinium of progress conditions: it does not exist in nature 
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom



Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝
𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼
𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general 𝐺 𝑝 > 𝑝 gives a higher scale-up

Concurrent and parallel programming
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Concurrent 
Data Structures:
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Concurrent 
Data Structures:

sets



Concurrent data structures

• Developing data structures which can be concurrently 
accessed by multiple threads can significantly increase 
performance

• Result’s correctness must be guaranteed (recall 
linearizability)

Concurrent and parallel programming
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INSERT(35)

Set implementations

Concurrent and parallel programming
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H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

INSERT(25)

• Set methods:
◦ insert(k)

◦ delete(k)

◦ find(k)

• Implemented as an ordered linked list



Insert algorithm

Concurrent and parallel programming
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INSERT(55)
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Insert algorithm
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Insert algorithm
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Insert algorithm
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Delete algorithm

Concurrent and parallel programming
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DELETE(40)

H 10 20 30 40 50 T



Delete algorithm

Concurrent and parallel programming
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left right

H 10 20 30 40 50 T



Delete algorithm

Concurrent and parallel programming
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H 10 20 30

40

50 T

left

right



Sequential set implementation

Concurrent and parallel programming
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1. node* search(int k, node **r){
2.   node *l, *r_next;
3.   l = set->head;
4.  
5.   *r = l->next;
6.  
7.   r_next = (*r)->next;
8.   while((*r)->key < k){
9.  
10.    l = *r;
11.    *r = r_next;
12. 
13.    r_next = (*r)->next;
14.  }
15.} 

1. bool do_operation(int k, int op_type){
2.   bool res = true; 
3.   node *l,*r;
4.  
5.   l = search(k, &r);
6.   switch(op_type){
7.     case(INSERT):
8.       if(r->key == k)  
9.         res = false;
10.      else  
11.        l->next = new node(k,r);
12.      break;
13.    case(DELETE):
14.      if(r->key == k)  
15.        l->next = r->next;
16.      else 
17.        res = false;
18.      break;
19.  }
20.  
21.  
22.  return res;
23.}



INSERT(35)

Concurrent set – Attempt 1

Concurrent and parallel programming
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H 10 20 30 40 50

INSERT(55)

DELETE(40)

INSERT(25)

• PESSIMISTIC approach

• Synchronize via global lock



Concurrent set – Attempt 1 (SRC)
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1. node* search(int k, node **r){
2.   node *l, *r_next;
3.   l = set->head;
4.  
5.   *r = l->next;
6.  
7.   r_next = (*r)->next;
8.   while((*r)->key < k){
9.  
10.    l = *r;
11.    *r = r_next;
12. 
13.    r_next = (*r)->next;
14.  }
15.} 

1. bool do_operation(int k, int op_type){
2.   bool res = true; 
3.   node *l,*r;
4.  
5.   l = search(k, &r);
6.   switch(op_type){
7.     case(INSERT):
8.       if(r->key == k)  
9.         res = false;
10.      else  
11.        l->next = new node(k,r);
12.      break;
13.    case(DELETE):
14.      if(r->key == k)  
15.        l->next = r->next;
16.      else 
17.        res = false;
18.      break;
19.  }
20.  
21.  
22.  return res;
23.}

LOCK(&glock);

UNLOCK(&glock);



Concurrent set – Attempt 1
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Concurrent set – Attempt 1
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INSERT(5)



Concurrent set – Attempt 1

Concurrent and parallel programming
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H 10 20 30 40 50

• PESSIMISTIC approach

• Synchronize via global lock

NO SCALABILITY!

…zZz…



INSERT(35)

Concurrent set – Attempt 2

Concurrent and parallel programming
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H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

INSERT(25)

• Fine-grain approach

• Each node has its own lock

• Keep two locks at a time (lock coupling):
◦ One on the current node
◦ One on its predecessor



Search algorithm

Concurrent and parallel programming
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INSERT(55)
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Search algorithm

Concurrent and parallel programming
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H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm

Concurrent and parallel programming
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• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm
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• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm

Concurrent and parallel programming
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INSERT(55)
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• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor



Search algorithm

Concurrent and parallel programming
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H 10 20 30 40 50

left right

55

T

left right

5

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

• Multiple threads access the data structure simultaneously



Concurrent set – Attempt 2 (SRC)
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1. node* search(int k, node **r){
2.   node *l, *r_next;
3.   l = set->head;
4.  
5.   *r = l->next;
6.  
7.   r_next = (*r)->next;
8.   while((*r)->key < k){
9.  
10.    l = *r;
11.    *r = r_next;
12. 
13.    r_next = (*r)->next;
14.  }
15.} 

1. bool do_operation(int k, int op_type){
2.   bool res = true; 
3.   node *l,*r;
4.  
5.   l = search(k, &r);
6.   switch(op_type){
7.     case(INSERT):
8.       if(r->key == k)  
9.         res = false;
10.      else  
11.        l->next = new node(k,r);
12.      break;
13.    case(DELETE):
14.      if(r->key == k)  
15.        l->next = r->next;
16.      else 
17.        res = false;
18.      break;
19.  }
20.  
21.  
22. 
23. return res;
24.}

LOCK(&glock);

UNLOCK(&glock);

UNLOCK(&l->lock);

LOCK(&l->lock);

UNLOCK(&l->lock);
UNLOCK(&r->lock);

LOCK(&(*r)->lock);

LOCK(&(*r)->lock);



Concurrent set – Attempt 2
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Search algorithm

Concurrent and parallel programming
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• Allows an increased parallelism but…



Search algorithm
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H 10 20 30 40 50

left right

55

T

• Allows an increased parallelism but…

• High costs for lock handover



Recap 

• Explored two blocking strategies:

1. Global (coarse-grain) lock

Concurrent and parallel programming
34

.zZz.. SHARED RESOURCE

2. (Fine-grain) Lock coupling

.zZz..

SHARED RESOURCE



Non-blocking algorithms

• We do not rely on locks for synchronization (they make our 
algorithm dependent on fairness)

Concurrent and parallel programming
35

SHARED RESOURCE

SINGLE ATOMIC INSTRUCTION:
Atomicity & Termination 
guaranteed by processor 

firmware

• How ?

• How??

By ensuring that mutual exclusion regions terminate



Read-Modify-Write

• RMW instructions allow to read memory and modify 
its content in an apparently instantaneous fashion.

Concurrent and parallel programming
36

1.RMW(MRegister *r, Function f){
2.  atomic{
3.  old = r;
4.  *r = f(r);
5.  return old;
6.  }
7.} 

• Even conventional atomic Load and Store can be 
seen as RMW operations



Compare-And-Swap

• Compare-and-Swap (CAS) is an atomic instruction used in 
multithreading to achieve synchronization
◦ It compares the contents of a memory area with a supplied value

◦ If and only if they are the same

◦ The contents of the memory area are updated with the new 
provided value

• Atomicity guarantees that the new value is computed based 
on up-to-date information

• If, in the meanwhile, the value has been updated by another 
thread, the update fails

• This instruction has been introduced in 1970 in the IBM 370 
trying to limit as much as possible the use of spinlocks

Concurrent and parallel programming
37



Compare-And-Swap

Concurrent and parallel programming
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1. CAS(Mregister *r, Value old_value, Value new_value f){ 
2.   atomic{
3.      Value res = *r;
4.      if(*r == old_value) *r = new_value;
5.      return res;
6.   }
7. } 

• RMW instructions allow to read memory and modify its 
content in an apparently instantaneous fashion.

• CAS is implemented by x86 architectures (see CMPXCHG)

• gcc offers the __sync_val_compare_and_swap builtin



Concurrent set – Attempt 3

Concurrent and parallel programming
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INSERT(55)

DELETE(40)



Concurrent set – Attempt 3
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H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

• NON-BLOCKING approach [Harris linked list] 

• Search without acquiring any lock

• Apply updates with individual atomic instructions



Non-blocking insert & delete algorithms

Concurrent and parallel programming
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Insert:

1. Search left and right nodes

2. Insert the new item with a CAS

3. If CAS fails restart from 1

H 10

20

T

left right

Delete:

1. Search left and right nodes

2. Disconnect the item with a 
CAS

3. If CAS fails restart from 1

H 10 T

left right

CAS

CAS

INSERT(20) DELETE(10)

• Is it correct?



Incorrect delete algorithm 

Concurrent and parallel programming
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T

• Edge cases might lead to losing items!

H 10



Incorrect delete algorithm 

Concurrent and parallel programming
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left right

INSERT(20)

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10



Incorrect delete algorithm 
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left right

INSERT(20)

DELETE(10)

• Edge cases might lead to losing items!

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10



Incorrect delete algorithm 

Concurrent and parallel programming
45

20

left right

INSERT(20)

DELETE(10)

T

• Edge cases might lead to losing items!

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

H 10 CAS



H

Incorrect delete algorithm 

Concurrent and parallel programming
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20

T

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

10



The correct delete algorithm 

Concurrent and parallel programming
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H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS



The correct delete algorithm 
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H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS

• Typically memory objects are byte aligned
• The LSB is always 0! BIT STEALING!!!

0xff ...  0

ke y

10
mark

1

next

CAS



The correct delete algorithm 

Concurrent and parallel programming
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H 10

20

left right

INSERT(20)

DELETE(10)

T

CAS

fail

• Updates of the ”next” field by two opposite concurrent operations 
cannot both succeed

• What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!



Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
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Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches
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Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches
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Non-blocking search

• The search returns two adjacent non-marked (left and right) 
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
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H 10 20 30 40 50 T
CAS

left right

40



Concurrent set – Attempt 3 (SRC)
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1. bool do_operation(int k, int op_type){
2.   node *l,*r, *n = new node(k);
3.   l = search(k, &r);                 /* get left and right node */
4.   switch(op_type){
5.     case(INSERT):
6.       if(r->key == k) return false;  /* key present in the set */
7.       n->next = r;
8.       l->next = n;                   /* insert the item        */                     
9.  
10. 
11.      break;
12.    case(DELETE):
13.      if(r->key != k) return false;  /* key not present        */
14.      l->next = r->next;             /* remove the key         */   
15.    
16.     
17.  
18.      break;
19.  }
20.  return true;
21.}



Concurrent set – Attempt 3 (SRC)
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1. bool do_operation(int k, int op_type){
2.   node *l,*r, *n = new node(k);
3.   l = search(k, &r);                 /* get left and right node */
4.   switch(op_type){
5.     case(INSERT):
6.       if(r->key == k) return false;  /* key present in the set */
7.       n->next = r;
8.       l->next = n;                   /* insert the item        */                     
9. if(!CAS(&l->next, r, n))    
10. goto 3; /* insertion failed the item -> restart */     
11.      break;
12.    case(DELETE):
13.      if(r->key != k) return false;  /* key not present        */
14.      l->next = r->next;             /* remove the key         */   
15. if(is_marked_ref((l=r->next)) || !CAS(&r->next, l, mark(l))) 
16. goto 3; /* insertion failed the item -> restart */
17. search(k,&r); /* repeat search          */          
18. break;
19.  }
20.  return true;
21.}



Concurrent set – Attempt 3 (SRC)

1. node* search(int k, node **r){

2. node *l, *t, *t_next, *l_next;

3. *t = set->head;

4. t_next = t->head->next;

5. while(1){                        /* FIND LEFT AND RIGHT NODE */

6. if(!is_marked(t_next)){

7. l = t;

8. l_next = t_next;

9. }

10. t = get_unmarked_ref((t_next);

11. t_next = t->next;

12. if(!is_marked_ref(t_next) && t->key >= k) break;

13. }

14. *r = t; 

15. /* DEL MARKED NODES */

16. if(l_next != *r && !CAS(&l->next, l_next, *r) goto 3;

17. return l;

18.}
Concurrent and parallel programming
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Safety and liveness guarantees

• The algorithm is NON-BLOCKING (LOCK-FREE):
◦ If a thread A is stuck in a retry loop => a CAS fails each time

◦ If a CAS fail, it is because of another CAS that was successfully 
executed by a thread B

◦ Thread B is making progress

• The algorithm is LINEARIZABLE:
◦ Each method execution take effect in an atomic point (a successful 

CAS) contained between its invocation and reply

◦ The order obtained by using these points has been proved to be 
compliant with the Set semantic

Concurrent and parallel programming
58



Problems & Solutions

• Problems arise when re-using memory:
◦ The CAS suffers from the ABA problem

◦ We might reuse a node which is concurrently accessed by another 
thread (e.g. during a search)

• Solutions:
1. Use a tag that changes every time a field has been update (even 

when overwritten with the same value)
• Pros: easy to implement

• Cons: ABA might still occur, but with low probability

2. Adopt garbage collectors that enable safe memory reusage
• Pros: solve all problems

• Cons: Hard to implement efficiently

Concurrent and parallel programming
59



Can we do better?

• Starting from this “simple” set implementation we can build 
faster set implementations
◦ Skip lists (O(logn))

◦ Hash tables (O(1)) 

• Most of them are based on similar techniques:
◦ use a linked list

◦ build an index on top of it to accelerate look ups

Concurrent and parallel programming
60

H 10 20 30 40 50 T

H 10 30 50 T

H 30 T



Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
61
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left right

T



Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
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Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
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40

left right

45 50 40 50

left right



Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
64

40

left right

45 50 40 50

left right

• Validate left and right before apply an update:
◦ Left is unmarked

◦ Right is unmarked



Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
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• Validate left and right before apply an update:
◦ Left is unmarked

◦ Right is unmarked

H 10 20 30 40 50

left right

T
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Concurrent 
Data Structures:

Non-blocking stacks



POP()

Stack implementation

Concurrent and parallel programming
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H d c e T

PUSH(g)

POP()

PUSH(b)

• Stack methods:
◦ push(v)

◦ pop()

• Implemented as a linked list



POP()

Concurrent stack implementations

Concurrent and parallel programming
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H d c e T

PUSH(g)

POP()

PUSH(b)

• Resort to a global lock
◦ Do not scale

• Resort to a non-blocking approach



Non-blocking stack – Attempt 1 [Treiber]

Concurrent and parallel programming
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Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart 

H T

Delete:

1. Get head next 

2. Disconnect the item with a 
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS



Non-blocking stack – Attempt 1 [Treiber]

Concurrent and parallel programming
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Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent and parallel programming
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Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart 

H T

Delete:

1. Get head next 

2. Disconnect the item with a 
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

     backoff 
and restart      backoff 

and restart



Non-blocking stack – Attempt 2 [Treiber+BO]
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Concurrent stack implementations

Concurrent and parallel programming
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H d c e T

PUSH(g)

POP()

• Resort to a global lock
◦ Do not scale

• Resort to a naïve non-blocking approach
◦ Do not scale

• Resort to a naïve non-blocking approach + Back off
◦ Do not scale, but conflict resilient

• How achieve scalability? Make back-off times useful



Non-blocking stack – Attempt 3

Concurrent and parallel programming
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H d c e T

• How to take advantage of back-off times?

PUSH(g)



Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent and parallel programming
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Push(3)

B

A

Pop()(3)

• A push A and a pop B are:
◦ concurrent to each other

◦ B returns the item inserted by A

 we can always take two points such that:
◦ A is the last one to insert an item before A linearizes

◦ B appears to extract the last item inserted (by A)

nothing happens here



Non-blocking stack – Attempt 3

Concurrent and parallel programming
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H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

PUSH(g)

POP()



Non-blocking stack – Attempt 3

Concurrent and parallel programming
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H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

• How??

g



Non-blocking stack – Elimination stack

Concurrent and parallel programming
78

• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

Treiber Stack

PUSH(g)
CAS

fail
POP()



Non-blocking stack – Elimination stack

Concurrent and parallel programming
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• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

3. Wait for a matching operation

4. If no matching op, GOTO 1

Treiber Stack

POP()

PUSH(h)

POP()

POP()

PUSH(k)



Non-blocking stack – Attempt 3

Concurrent and parallel programming
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Concurrent and parallel programming
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Concurrent 
Data Structures:

Non-blocking priority queues



Priority queue implementations

Concurrent and parallel programming
82

• Priority Queue methods:
◦ enqueue(k): adds a new item

◦ dequeue(): returns and remove the highest priority item

• Implemented as an ordered linked list

ENQ(35)

ENQ(55)

DEQ()

ENQ(25)

This is a huge simplification.
Tipically they are implemented as 

skip-lists (log(n)) or calendar queues 
(O(1))

H T0.1 1.3 5.0 6.5 7.1 9.8



Priority queue – Attempt 1

• Enqueue: works as insertions in the non-blocking Set
◦ Connect via CAS

• Dequeues: work as deletions in the non-blocking Set
◦ Mark as logically deleted, but

◦ DISCONNECT IMMEDIATELY

• Is it scalable?

Concurrent and parallel programming
83

H T0.1 1.3 5.0 6.5 7.1 9.8

8

CAS

CAS

CAS



Priority queue – Attempt 1

Concurrent and parallel programming
84

Scalability
collapse



Priority queues: an inherently “sequential” semantic

• Enqueue offers a high level of disjoint access parallelism

• Dequeues are prone to conflicts

                      

       

H

Concurrent and parallel programming
85

This region is highly shared 
among processors’ caches



Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Concurrent and parallel programming
86

H T1.3 5.0 7.1 9.86.50.1

Non-linearizable 
extraction

Enq(0.1)

B

A
Deq()

Enq(6.5)

Ret 6.5



Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there 
are two main approaches

1. Move the logical mark of a node in the field “next” of its 
predecessor

Concurrent and parallel programming
87

H T1.3 5.0 7.1 9.8
fail

0.1



Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there 
are two main approaches

2. Use logical timestamps:
◦ incremented each time a new minimum has been inserted
◦ extract item compatible with the timestamp read at the beginning

Concurrent and parallel programming
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H T1.3 5.0 7.1 9.8

Ts=0 Ts=0

0.1

Ts=0

6.5

Ts=1 Ts=0 Ts=0Ts=0

Ts=1

Ts=0 !



PQ – Attempt 2 - Introducing Conflict Resiliency 

• Lazy deletion

• Skip logically deleted items   IT INCREASES THE NUMBER OF STEPS

• Periodic Housekeeping

This technique is adopted by:
State-of-the-art skip list (NBSL) [Lin13]
Conflict Resilient Calendar Queue (CRCQ) = NBCQ + conflict resiliency

                      

#deleted items> threshold

H CAS

Innovative Concurrent Data Structures and Synchronization Supports  in Multi-core Platforms
89

 EXPENSIVE IN TERMS OF IMPACT ON CACHE



Priority queue – Attempt 2
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On the conflict resiliency trade off

Concurrent and parallel programming
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• The number of steps per dequeue and costs of 
housekeeping are dependent:

THRESHOLD ⇒ READ
LATENCY

and
RMW

IMPACT

and
RMW

IMPACT
THRESHOLD ⇒ READ

LATENCY



Conflict resiliency trade offs
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Priority queues – Attempt 3
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Open challenges

How to achieve scalability for priority queues?

• NO ANSWER for correct priority queue

• The research moved on looking for RELAXED SEMANTICS for 
priority queues
◦ Enable scalability for extractions by removing an item which is 

“near” the minimum

• Explore orthogonal approaches by guaranteeing RELAXED 
CORRECTNESS CONDITIONS
◦ K-linearizability
◦ Quasi-linearizabilty
◦ Quiescent consistency
◦ Sequential consistency?

• Explore new hardware capabilities (e.g. HTM)

Concurrent and parallel programming
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Why linearizable non-blocking algorithms?

• Performance is a good reason, but not the unique one

• The composition of linearizable algorithm is still linearizable

• Blocking algorithms (and their composition) might suffer 
from deadlocks, priority inversions and convoying

• The composition of non-blocking algorithms is non-blocking 
as a whole (progress property of individual algorithm might 
be hampered)

• Libraries should implement their algorithms in a non-
blocking linearizable fashion
◦ E.g. Java implements non-blocking concurrent data structure

Concurrent and parallel programming
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Concurrent 
Data Structures:

FIFO queues



DEQ()

FIFO queue implementation

Concurrent and parallel programming
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H d c e T

ENQ(g)

DEQ()

ENQ(b)

• Queue methods:
◦ enqueue(v)

◦ dequeue()

• Implemented as a linked list



FIFO queue implementation

Concurrent and parallel programming
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• Slightly different

• One dummy node, two pointers to access the data 
structure:
◦ Head: points ALWAYS to a DUMMY node item 

◦ Tail: SHOULD point to the youngest item

H T

DU a b NULL



FIFO queue implementation
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• Insert:
1. Get node pointed by tail
2. Scan until next is NULL
3. Try to insert with CAS
4. If KO goto 1
5. Else try to update Tail

H T

DU a b NULL

c

CAS

NULL

CAS

• Dequeue:
1. Get node pointed by head
2. Try to update head with its 

next
3. If KO goto 1

H T

DU a b NULL

CAS

This becomes the 
new dummy node

ENQ(c) DEQ()



The whole story

• Since the insertion of a new  item and the tail update are two 
separate RMW they might be inconsistent

• Also dequeuers might need to update tail before updating head
• This ensures that TAIL cannot go behind HEAD

Concurrent and parallel programming
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H T

DU a b NULL

CAS

DEQ()

CAS



Emptiness condition

• There is a NULL node after the one pointed by HEAD

Concurrent and parallel programming
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H T

DU a b NULL

DEQ()



Recommended readings
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SET:

• A pragmatic implementation of non-blocking linked-lists
T. L. Harris, International Symposium on Distributed Computing, 2001.

• Fraser, K.: Practical Lock-Freedom. PhD thesis, 

STACK:

• Systems programming: Coping with parallelism
R K Treiber, IBM Almaden Research Center, 1986.

• A Scalable Lock-free Stack Algorithm
D. Hendler et al., SPAA’04.

PRIORITY QUEUE:

• A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention
J. Lindén et al., ICPDS’2013

• A Conflict-Resilient Lock-Free Calendar Queue for Scalable Share-Everything PDES Platforms
R. Marotta et al., PADS’2017

• A Conflict-Resilient Lock-Free Linearizable Calendar Queue
R. Marotta et al., ACM TOPC (just accepted)

FIFO:

• Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
M. M. Michael et al., PODC '96



Wait-free FIFO queue

• What about a wait-free queue?

• Wait-free means that all method invocations are 
guaranteed to complete

• Can we modify the lock-free FIFO queue to achieve this?

• Lock-free means that some thread might starve

• If before starting any new operation we complete a pending 
operation, all method invocation complete eventually

Concurrent and parallel programming
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Shared 
Data 

structure

Done!

Done!

Done!

Shared 
Data 

structure

Done!

Done!

Shared 
Data 

structure

Help!

Done!

Done!
Done!



Wait-free FIFO queue

• We need to be aware of pending calls

Concurrent and parallel programming
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phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

9

False

True

NULL

• Split operations on the linked list into 2 steps:
1. Modify nodes for enqueue/dequeue (main step)

2. Modify head/tail pointers (finishing step)



Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

2. Get the set S of all pending ops whose record has been 
previously or concurrently published

3. Help any operation in S

4. Do a finishing step

Concurrent and parallel programming
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Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

Concurrent and parallel programming
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phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

9

False

True

NULL

2

k

0 1 2

True

True

10

CAS



Wait-free FIFO queue

• Enqueue/Dequeue structure
2. Get the set S of all pending ops whose record has been 

previously or concurrently published

Concurrent and parallel programming
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phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

2

k

0 1 2

True

True

10



Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (dequeue)

a. Main step
b. Finishing step

Concurrent and parallel programming
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9

True

False

NULL

help 0

2

H T

DU a b NULL

0 1 2

2

-1

9

True

False

CAS

CAS
0

9

False

False

CAS



Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (enqueue)

a. Main step
b. Finishing step

Concurrent and parallel programming
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10

True

True

help 2

2

H T

DU a b NULL

0 1 2

2

0

k

1

-1

k

2

-1

NULL

CAS



Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (enqueue)

a. Main step
b. Finishing step

Concurrent and parallel programming
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10

True

True

help 2

2

H T

DU a b

0 1 2

2

0

10

False

True

CAS

k

1

-1

k

2

-1

NULL

CAS



Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

2. Get the set S of all pending ops whose record has been 
previously or concurrently published

3. Help any operation in S

4. Do a finishing step

Concurrent and parallel programming
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Opt 1: help only one pending op
Opt 2: use FAD to get phase num.



Fast Wait-free FIFO queue

• Try with lock-free approach

• If starving, back-off to wait-free implementation

Concurrent and parallel programming
112


	Slide 1: Concurrent and parallel  programming
	Slide 2
	Slide 3: Correctness conditions (incomplete) taxonomy
	Slide 4: Progress taxonomy
	Slide 5: Speed-up according to Sun Ni
	Slide 6
	Slide 7
	Slide 8: Concurrent data structures
	Slide 9: Set implementations
	Slide 10: Insert algorithm
	Slide 11: Insert algorithm
	Slide 12: Insert algorithm
	Slide 13: Insert algorithm
	Slide 14: Delete algorithm
	Slide 15: Delete algorithm
	Slide 16: Delete algorithm
	Slide 17: Sequential set implementation
	Slide 18: Concurrent set – Attempt 1
	Slide 19: Concurrent set – Attempt 1 (SRC)
	Slide 20: Concurrent set – Attempt 1
	Slide 21: Concurrent set – Attempt 1
	Slide 22: Concurrent set – Attempt 1
	Slide 23: Concurrent set – Attempt 2
	Slide 24: Search algorithm
	Slide 25: Search algorithm
	Slide 26: Search algorithm
	Slide 27: Search algorithm
	Slide 28: Search algorithm
	Slide 29: Search algorithm
	Slide 30: Concurrent set – Attempt 2 (SRC)
	Slide 31: Concurrent set – Attempt 2
	Slide 32: Search algorithm
	Slide 33: Search algorithm
	Slide 34: Recap 
	Slide 35: Non-blocking algorithms
	Slide 36: Read-Modify-Write
	Slide 37: Compare-And-Swap
	Slide 38: Compare-And-Swap
	Slide 39: Concurrent set – Attempt 3
	Slide 40: Concurrent set – Attempt 3
	Slide 41: Non-blocking insert & delete algorithms
	Slide 42: Incorrect delete algorithm 
	Slide 43: Incorrect delete algorithm 
	Slide 44: Incorrect delete algorithm 
	Slide 45: Incorrect delete algorithm 
	Slide 46: Incorrect delete algorithm 
	Slide 47: The correct delete algorithm 
	Slide 48: The correct delete algorithm 
	Slide 49: The correct delete algorithm 
	Slide 50: Non-blocking search
	Slide 51: Non-blocking search
	Slide 52: Non-blocking search
	Slide 53: Non-blocking search
	Slide 54: Concurrent set – Attempt 3 (SRC)
	Slide 55: Concurrent set – Attempt 3 (SRC)
	Slide 56: Concurrent set – Attempt 3 (SRC)
	Slide 57: Concurrent set – Attempt 3
	Slide 58: Safety and liveness guarantees
	Slide 59: Problems & Solutions
	Slide 60: Can we do better?
	Slide 61: Lazy Linked List
	Slide 62: Lazy Linked List
	Slide 63: Lazy Linked List
	Slide 64: Lazy Linked List
	Slide 65: Lazy Linked List
	Slide 66
	Slide 67: Stack implementation
	Slide 68: Concurrent stack implementations
	Slide 69: Non-blocking stack – Attempt 1 [Treiber]
	Slide 70: Non-blocking stack – Attempt 1 [Treiber]
	Slide 71: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 72: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 73: Concurrent stack implementations
	Slide 74: Non-blocking stack – Attempt 3
	Slide 75: Observation
	Slide 76: Non-blocking stack – Attempt 3
	Slide 77: Non-blocking stack – Attempt 3
	Slide 78: Non-blocking stack – Elimination stack
	Slide 79: Non-blocking stack – Elimination stack
	Slide 80: Non-blocking stack – Attempt 3
	Slide 81
	Slide 82: Priority queue implementations
	Slide 83: Priority queue – Attempt 1
	Slide 84: Priority queue – Attempt 1
	Slide 85: Priority queues: an inherently “sequential” semantic
	Slide 86: Lazy deletion within priority queues
	Slide 87: Correct lazy deletion within priority queues
	Slide 88: Correct lazy deletion within priority queues
	Slide 89: PQ – Attempt 2 - Introducing Conflict Resiliency 
	Slide 90: Priority queue – Attempt 2
	Slide 91: On the conflict resiliency trade off
	Slide 92: Conflict resiliency trade offs
	Slide 93: Priority queues – Attempt 3
	Slide 94: Open challenges
	Slide 95: Why linearizable non-blocking algorithms?
	Slide 96
	Slide 97: FIFO queue implementation
	Slide 98: FIFO queue implementation
	Slide 99: FIFO queue implementation
	Slide 100: The whole story
	Slide 101: Emptiness condition
	Slide 102: Recommended readings
	Slide 103: Wait-free FIFO queue
	Slide 104: Wait-free FIFO queue
	Slide 105: Wait-free FIFO queue
	Slide 106: Wait-free FIFO queue
	Slide 107: Wait-free FIFO queue
	Slide 108: Wait-free FIFO queue
	Slide 109: Wait-free FIFO queue
	Slide 110: Wait-free FIFO queue
	Slide 111: Wait-free FIFO queue
	Slide 112: Fast Wait-free FIFO queue

