
Romolo Marotta

Concurrent and parallel
programming

Concurrent and parallel programming
2

Correctness conditions
Progress conditions

Performance

Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a
sequential order

Respects program order
in each thread

Consistent with
real-time ordering

Access multiple objects
atomically

Locality

Concurrent and parallel programming
3

Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Concurrent and parallel programming
4

• The Einsteinium of progress conditions: it does not exist in nature
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom

Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝
𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼
𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general 𝐺 𝑝 > 𝑝 gives a higher scale-up

Concurrent and parallel programming
5

Concurrent and parallel programming
6

Concurrent
Data Structures:

Concurrent and parallel programming
7

Concurrent
Data Structures:

sets

Concurrent data structures

• Developing data structures which can be concurrently
accessed by multiple threads can significantly increase
performance

• Result’s correctness must be guaranteed (recall
linearizability)

Concurrent and parallel programming
8

INSERT(35)

Set implementations

Concurrent and parallel programming
9

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

INSERT(25)

• Set methods:
◦ insert(k)

◦ delete(k)

◦ find(k)

• Implemented as an ordered linked list

Insert algorithm

Concurrent and parallel programming
10

H 10 20 30 40 50

INSERT(55)

T

Insert algorithm

Concurrent and parallel programming
11

H 10 20 30 40 50

left right

55

T

Insert algorithm

Concurrent and parallel programming
12

H 10 20 30 40 50 T

left right

55

Insert algorithm

Concurrent and parallel programming
13

H 10 20 30 40 50 T

left right

55

Delete algorithm

Concurrent and parallel programming
14

DELETE(40)

H 10 20 30 40 50 T

Delete algorithm

Concurrent and parallel programming
15

left right

H 10 20 30 40 50 T

Delete algorithm

Concurrent and parallel programming
16

H 10 20 30

40

50 T

left

right

Sequential set implementation

Concurrent and parallel programming
17

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}

INSERT(35)

Concurrent set – Attempt 1

Concurrent and parallel programming
18

H 10 20 30 40 50

INSERT(55)

DELETE(40)

INSERT(25)

• PESSIMISTIC approach

• Synchronize via global lock

Concurrent set – Attempt 1 (SRC)

Concurrent and parallel programming
19

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}

LOCK(&glock);

UNLOCK(&glock);

Concurrent set – Attempt 1

Concurrent and parallel programming
20

0

20

40

60

80

100

120

140

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Concurrent set – Attempt 1

Concurrent and parallel programming
21

H 10 20 30 40 50

INSERT(5)

Concurrent set – Attempt 1

Concurrent and parallel programming
22

H 10 20 30 40 50

• PESSIMISTIC approach

• Synchronize via global lock

NO SCALABILITY!

…zZz…

INSERT(35)

Concurrent set – Attempt 2

Concurrent and parallel programming
23

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

INSERT(25)

• Fine-grain approach

• Each node has its own lock

• Keep two locks at a time (lock coupling):
◦ One on the current node
◦ One on its predecessor

Search algorithm

Concurrent and parallel programming
24

H 10 20 30 40 50

INSERT(55)

T

Search algorithm

Concurrent and parallel programming
25

H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

Search algorithm

Concurrent and parallel programming
26

H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

Search algorithm

Concurrent and parallel programming
27

H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

Search algorithm

Concurrent and parallel programming
28

H 10 20 30 40 50

INSERT(55)

left right

55

T

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

Search algorithm

Concurrent and parallel programming
29

H 10 20 30 40 50

left right

55

T

left right

5

• Keep two locks at a time (lock coupling):
◦ One on the current node

◦ One on its predecessor

• Multiple threads access the data structure simultaneously

Concurrent set – Attempt 2 (SRC)

Concurrent and parallel programming
30

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22.
23. return res;
24.}

LOCK(&glock);

UNLOCK(&glock);

UNLOCK(&l->lock);

LOCK(&l->lock);

UNLOCK(&l->lock);
UNLOCK(&r->lock);

LOCK(&(*r)->lock);

LOCK(&(*r)->lock);

Concurrent set – Attempt 2

Concurrent and parallel programming
31

0

20

40

60

80

100

120

140

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC

CHAINED

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Search algorithm

Concurrent and parallel programming
32

H 10 20 30 40 50

left right

55

T

• Allows an increased parallelism but…

Search algorithm

Concurrent and parallel programming
33

H 10 20 30 40 50

left right

55

T

• Allows an increased parallelism but…

• High costs for lock handover

Recap

• Explored two blocking strategies:

1. Global (coarse-grain) lock

Concurrent and parallel programming
34

.zZz.. SHARED RESOURCE

2. (Fine-grain) Lock coupling

.zZz..

SHARED RESOURCE

Non-blocking algorithms

• We do not rely on locks for synchronization (they make our
algorithm dependent on fairness)

Concurrent and parallel programming
35

SHARED RESOURCE

SINGLE ATOMIC INSTRUCTION:
Atomicity & Termination
guaranteed by processor

firmware

• How ?

• How??

By ensuring that mutual exclusion regions terminate

Read-Modify-Write

• RMW instructions allow to read memory and modify
its content in an apparently instantaneous fashion.

Concurrent and parallel programming
36

1.RMW(MRegister *r, Function f){
2. atomic{
3. old = r;
4. *r = f(r);
5. return old;
6. }
7.}

• Even conventional atomic Load and Store can be
seen as RMW operations

Compare-And-Swap

• Compare-and-Swap (CAS) is an atomic instruction used in
multithreading to achieve synchronization
◦ It compares the contents of a memory area with a supplied value

◦ If and only if they are the same

◦ The contents of the memory area are updated with the new
provided value

• Atomicity guarantees that the new value is computed based
on up-to-date information

• If, in the meanwhile, the value has been updated by another
thread, the update fails

• This instruction has been introduced in 1970 in the IBM 370
trying to limit as much as possible the use of spinlocks

Concurrent and parallel programming
37

Compare-And-Swap

Concurrent and parallel programming
38

1. CAS(Mregister *r, Value old_value, Value new_value f){
2. atomic{
3. Value res = *r;
4. if(*r == old_value) *r = new_value;
5. return res;
6. }
7. }

• RMW instructions allow to read memory and modify its
content in an apparently instantaneous fashion.

• CAS is implemented by x86 architectures (see CMPXCHG)

• gcc offers the __sync_val_compare_and_swap builtin

Concurrent set – Attempt 3

Concurrent and parallel programming
39

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

Concurrent set – Attempt 3

Concurrent and parallel programming
40

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

• NON-BLOCKING approach [Harris linked list]

• Search without acquiring any lock

• Apply updates with individual atomic instructions

Non-blocking insert & delete algorithms

Concurrent and parallel programming
41

Insert:

1. Search left and right nodes

2. Insert the new item with a CAS

3. If CAS fails restart from 1

H 10

20

T

left right

Delete:

1. Search left and right nodes

2. Disconnect the item with a
CAS

3. If CAS fails restart from 1

H 10 T

left right

CAS

CAS

INSERT(20) DELETE(10)

• Is it correct?

Incorrect delete algorithm

Concurrent and parallel programming
42

T

• Edge cases might lead to losing items!

H 10

Incorrect delete algorithm

Concurrent and parallel programming
43

left right

INSERT(20)

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10

Incorrect delete algorithm

Concurrent and parallel programming
44

left right

INSERT(20)

DELETE(10)

• Edge cases might lead to losing items!

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10

Incorrect delete algorithm

Concurrent and parallel programming
45

20

left right

INSERT(20)

DELETE(10)

T

• Edge cases might lead to losing items!

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

H 10 CAS

H

Incorrect delete algorithm

Concurrent and parallel programming
46

20

T

• Edge cases might lead to losing items!

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

10

The correct delete algorithm

Concurrent and parallel programming
47

H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS

The correct delete algorithm

Concurrent and parallel programming
48

H 10 T

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

CAS
CAS

• Typically memory objects are byte aligned
• The LSB is always 0! BIT STEALING!!!

0xff ... 0

ke y

10
mark

1

next

CAS

The correct delete algorithm

Concurrent and parallel programming
49

H 10

20

left right

INSERT(20)

DELETE(10)

T

CAS

fail

• Updates of the ”next” field by two opposite concurrent operations
cannot both succeed

• What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!

Non-blocking search

• The search returns two adjacent non-marked (left and right)
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
50

H 10 20 30 40 50 T

Non-blocking search

• The search returns two adjacent non-marked (left and right)
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
51

H 10 20 30 40 50

left right

40

T

Non-blocking search

• The search returns two adjacent non-marked (left and right)
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
52

H 10 20 30 40 50

left right

40

T

Non-blocking search

• The search returns two adjacent non-marked (left and right)
nodes

• Housekeeping: disconnect logically delete items during searches

Concurrent and parallel programming
53

H 10 20 30 40 50 T
CAS

left right

40

Concurrent set – Attempt 3 (SRC)

Concurrent and parallel programming
54

1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r); /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false; /* key present in the set */
7. n->next = r;
8. l->next = n; /* insert the item */
9.
10.
11. break;
12. case(DELETE):
13. if(r->key != k) return false; /* key not present */
14. l->next = r->next; /* remove the key */
15.
16.
17.
18. break;
19. }
20. return true;
21.}

Concurrent set – Attempt 3 (SRC)

Concurrent and parallel programming
55

1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r); /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false; /* key present in the set */
7. n->next = r;
8. l->next = n; /* insert the item */
9. if(!CAS(&l->next, r, n))
10. goto 3; /* insertion failed the item -> restart */
11. break;
12. case(DELETE):
13. if(r->key != k) return false; /* key not present */
14. l->next = r->next; /* remove the key */
15. if(is_marked_ref((l=r->next)) || !CAS(&r->next, l, mark(l)))
16. goto 3; /* insertion failed the item -> restart */
17. search(k,&r); /* repeat search */
18. break;
19. }
20. return true;
21.}

Concurrent set – Attempt 3 (SRC)

1. node* search(int k, node **r){

2. node *l, *t, *t_next, *l_next;

3. *t = set->head;

4. t_next = t->head->next;

5. while(1){ /* FIND LEFT AND RIGHT NODE */

6. if(!is_marked(t_next)){

7. l = t;

8. l_next = t_next;

9. }

10. t = get_unmarked_ref((t_next);

11. t_next = t->next;

12. if(!is_marked_ref(t_next) && t->key >= k) break;

13. }

14. *r = t;

15. /* DEL MARKED NODES */

16. if(l_next != *r && !CAS(&l->next, l_next, *r) goto 3;

17. return l;

18.}
Concurrent and parallel programming

56

0

200

400

600

800

1000

1200

1400

1600

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC CHAINED

LOCK-FREE

Concurrent set – Attempt 3

Concurrent and parallel programming
57

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Safety and liveness guarantees

• The algorithm is NON-BLOCKING (LOCK-FREE):
◦ If a thread A is stuck in a retry loop => a CAS fails each time

◦ If a CAS fail, it is because of another CAS that was successfully
executed by a thread B

◦ Thread B is making progress

• The algorithm is LINEARIZABLE:
◦ Each method execution take effect in an atomic point (a successful

CAS) contained between its invocation and reply

◦ The order obtained by using these points has been proved to be
compliant with the Set semantic

Concurrent and parallel programming
58

Problems & Solutions

• Problems arise when re-using memory:
◦ The CAS suffers from the ABA problem

◦ We might reuse a node which is concurrently accessed by another
thread (e.g. during a search)

• Solutions:
1. Use a tag that changes every time a field has been update (even

when overwritten with the same value)
• Pros: easy to implement

• Cons: ABA might still occur, but with low probability

2. Adopt garbage collectors that enable safe memory reusage
• Pros: solve all problems

• Cons: Hard to implement efficiently

Concurrent and parallel programming
59

Can we do better?

• Starting from this “simple” set implementation we can build
faster set implementations
◦ Skip lists (O(logn))

◦ Hash tables (O(1))

• Most of them are based on similar techniques:
◦ use a linked list

◦ build an index on top of it to accelerate look ups

Concurrent and parallel programming
60

H 10 20 30 40 50 T

H 10 30 50 T

H 30 T

Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
61

H 10 20 30 40 50

left right

T

Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
62

40

left right

45 50

Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
63

40

left right

45 50 40 50

left right

Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
64

40

left right

45 50 40 50

left right

• Validate left and right before apply an update:
◦ Left is unmarked

◦ Right is unmarked

Lazy Linked List

• Wait-free search (no retry)

• Mark has its own memory field

Concurrent and parallel programming
65

• Validate left and right before apply an update:
◦ Left is unmarked

◦ Right is unmarked

H 10 20 30 40 50

left right

T

Concurrent and parallel programming
66

Concurrent
Data Structures:

Non-blocking stacks

POP()

Stack implementation

Concurrent and parallel programming
67

H d c e T

PUSH(g)

POP()

PUSH(b)

• Stack methods:
◦ push(v)

◦ pop()

• Implemented as a linked list

POP()

Concurrent stack implementations

Concurrent and parallel programming
68

H d c e T

PUSH(g)

POP()

PUSH(b)

• Resort to a global lock
◦ Do not scale

• Resort to a non-blocking approach

Non-blocking stack – Attempt 1 [Treiber]

Concurrent and parallel programming
69

Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart

H T

Delete:

1. Get head next

2. Disconnect the item with a
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

Non-blocking stack – Attempt 1 [Treiber]

Concurrent and parallel programming
70

Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent and parallel programming
71

Push:

1. Get head next

2. Insert the new item with a CAS

3. If CAS fails, restart

H T

Delete:

1. Get head next

2. Disconnect the item with a
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

 backoff
and restart backoff

and restart

Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent and parallel programming
72

Concurrent stack implementations

Concurrent and parallel programming
73

H d c e T

PUSH(g)

POP()

• Resort to a global lock
◦ Do not scale

• Resort to a naïve non-blocking approach
◦ Do not scale

• Resort to a naïve non-blocking approach + Back off
◦ Do not scale, but conflict resilient

• How achieve scalability? Make back-off times useful

Non-blocking stack – Attempt 3

Concurrent and parallel programming
74

H d c e T

• How to take advantage of back-off times?

PUSH(g)

Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent and parallel programming
75

Push(3)

B

A

Pop()(3)

• A push A and a pop B are:
◦ concurrent to each other

◦ B returns the item inserted by A

 we can always take two points such that:
◦ A is the last one to insert an item before A linearizes

◦ B appears to extract the last item inserted (by A)

nothing happens here

Non-blocking stack – Attempt 3

Concurrent and parallel programming
76

H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

PUSH(g)

POP()

Non-blocking stack – Attempt 3

Concurrent and parallel programming
77

H d c e T

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while waiting

• Match the two without interacting with the stack

• How??

g

Non-blocking stack – Elimination stack

Concurrent and parallel programming
78

• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

Treiber Stack

PUSH(g)
CAS

fail
POP()

Non-blocking stack – Elimination stack

Concurrent and parallel programming
79

• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of the array

3. Wait for a matching operation

4. If no matching op, GOTO 1

Treiber Stack

POP()

PUSH(h)

POP()

POP()

PUSH(k)

Non-blocking stack – Attempt 3

Concurrent and parallel programming
80

Concurrent and parallel programming
81

Concurrent
Data Structures:

Non-blocking priority queues

Priority queue implementations

Concurrent and parallel programming
82

• Priority Queue methods:
◦ enqueue(k): adds a new item

◦ dequeue(): returns and remove the highest priority item

• Implemented as an ordered linked list

ENQ(35)

ENQ(55)

DEQ()

ENQ(25)

This is a huge simplification.
Tipically they are implemented as

skip-lists (log(n)) or calendar queues
(O(1))

H T0.1 1.3 5.0 6.5 7.1 9.8

Priority queue – Attempt 1

• Enqueue: works as insertions in the non-blocking Set
◦ Connect via CAS

• Dequeues: work as deletions in the non-blocking Set
◦ Mark as logically deleted, but

◦ DISCONNECT IMMEDIATELY

• Is it scalable?

Concurrent and parallel programming
83

H T0.1 1.3 5.0 6.5 7.1 9.8

8

CAS

CAS

CAS

Priority queue – Attempt 1

Concurrent and parallel programming
84

Scalability
collapse

Priority queues: an inherently “sequential” semantic

• Enqueue offers a high level of disjoint access parallelism

• Dequeues are prone to conflicts

H

Concurrent and parallel programming
85

This region is highly shared
among processors’ caches

Lazy deletion within priority queues

• If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

Concurrent and parallel programming
86

H T1.3 5.0 7.1 9.86.50.1

Non-linearizable
extraction

Enq(0.1)

B

A
Deq()

Enq(6.5)

Ret 6.5

Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there
are two main approaches

1. Move the logical mark of a node in the field “next” of its
predecessor

Concurrent and parallel programming
87

H T1.3 5.0 7.1 9.8
fail

0.1

Correct lazy deletion within priority queues

• To implement correct extractions with lazy deletions there
are two main approaches

2. Use logical timestamps:
◦ incremented each time a new minimum has been inserted
◦ extract item compatible with the timestamp read at the beginning

Concurrent and parallel programming
88

H T1.3 5.0 7.1 9.8

Ts=0 Ts=0

0.1

Ts=0

6.5

Ts=1 Ts=0 Ts=0Ts=0

Ts=1

Ts=0 !

PQ – Attempt 2 - Introducing Conflict Resiliency

• Lazy deletion

• Skip logically deleted items  IT INCREASES THE NUMBER OF STEPS

• Periodic Housekeeping

This technique is adopted by:
State-of-the-art skip list (NBSL) [Lin13]
Conflict Resilient Calendar Queue (CRCQ) = NBCQ + conflict resiliency

#deleted items> threshold

H CAS

Innovative Concurrent Data Structures and Synchronization Supports in Multi-core Platforms
89

 EXPENSIVE IN TERMS OF IMPACT ON CACHE

Priority queue – Attempt 2

Concurrent and parallel programming
90

On the conflict resiliency trade off

Concurrent and parallel programming
91

• The number of steps per dequeue and costs of
housekeeping are dependent:

THRESHOLD ⇒ READ
LATENCY

and
RMW

IMPACT

and
RMW

IMPACT
THRESHOLD ⇒ READ

LATENCY

Conflict resiliency trade offs

Concurrent and parallel programming
92

T
h
r
e
s
h
o
l
d

(
t
h
)

th
th
th

Priority queues – Attempt 3

Concurrent and parallel programming
93

Open challenges

How to achieve scalability for priority queues?

• NO ANSWER for correct priority queue

• The research moved on looking for RELAXED SEMANTICS for
priority queues
◦ Enable scalability for extractions by removing an item which is

“near” the minimum

• Explore orthogonal approaches by guaranteeing RELAXED
CORRECTNESS CONDITIONS
◦ K-linearizability
◦ Quasi-linearizabilty
◦ Quiescent consistency
◦ Sequential consistency?

• Explore new hardware capabilities (e.g. HTM)

Concurrent and parallel programming
94

Why linearizable non-blocking algorithms?

• Performance is a good reason, but not the unique one

• The composition of linearizable algorithm is still linearizable

• Blocking algorithms (and their composition) might suffer
from deadlocks, priority inversions and convoying

• The composition of non-blocking algorithms is non-blocking
as a whole (progress property of individual algorithm might
be hampered)

• Libraries should implement their algorithms in a non-
blocking linearizable fashion
◦ E.g. Java implements non-blocking concurrent data structure

Concurrent and parallel programming
95

Concurrent and parallel programming
96

Concurrent
Data Structures:

FIFO queues

DEQ()

FIFO queue implementation

Concurrent and parallel programming
97

H d c e T

ENQ(g)

DEQ()

ENQ(b)

• Queue methods:
◦ enqueue(v)

◦ dequeue()

• Implemented as a linked list

FIFO queue implementation

Concurrent and parallel programming
98

• Slightly different

• One dummy node, two pointers to access the data
structure:
◦ Head: points ALWAYS to a DUMMY node item

◦ Tail: SHOULD point to the youngest item

H T

DU a b NULL

FIFO queue implementation

Concurrent and parallel programming
99

• Insert:
1. Get node pointed by tail
2. Scan until next is NULL
3. Try to insert with CAS
4. If KO goto 1
5. Else try to update Tail

H T

DU a b NULL

c

CAS

NULL

CAS

• Dequeue:
1. Get node pointed by head
2. Try to update head with its

next
3. If KO goto 1

H T

DU a b NULL

CAS

This becomes the
new dummy node

ENQ(c) DEQ()

The whole story

• Since the insertion of a new item and the tail update are two
separate RMW they might be inconsistent

• Also dequeuers might need to update tail before updating head
• This ensures that TAIL cannot go behind HEAD

Concurrent and parallel programming
100

H T

DU a b NULL

CAS

DEQ()

CAS

Emptiness condition

• There is a NULL node after the one pointed by HEAD

Concurrent and parallel programming
101

H T

DU a b NULL

DEQ()

Recommended readings

Concurrent and parallel programming
102

SET:

• A pragmatic implementation of non-blocking linked-lists
T. L. Harris, International Symposium on Distributed Computing, 2001.

• Fraser, K.: Practical Lock-Freedom. PhD thesis,

STACK:

• Systems programming: Coping with parallelism
R K Treiber, IBM Almaden Research Center, 1986.

• A Scalable Lock-free Stack Algorithm
D. Hendler et al., SPAA’04.

PRIORITY QUEUE:

• A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention
J. Lindén et al., ICPDS’2013

• A Conflict-Resilient Lock-Free Calendar Queue for Scalable Share-Everything PDES Platforms
R. Marotta et al., PADS’2017

• A Conflict-Resilient Lock-Free Linearizable Calendar Queue
R. Marotta et al., ACM TOPC (just accepted)

FIFO:

• Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
M. M. Michael et al., PODC '96

Wait-free FIFO queue

• What about a wait-free queue?

• Wait-free means that all method invocations are
guaranteed to complete

• Can we modify the lock-free FIFO queue to achieve this?

• Lock-free means that some thread might starve

• If before starting any new operation we complete a pending
operation, all method invocation complete eventually

Concurrent and parallel programming
103

Shared
Data

structure

Done!

Done!

Done!

Shared
Data

structure

Done!

Done!

Shared
Data

structure

Help!

Done!

Done!
Done!

Wait-free FIFO queue

• We need to be aware of pending calls

Concurrent and parallel programming
104

phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

9

False

True

NULL

• Split operations on the linked list into 2 steps:
1. Modify nodes for enqueue/dequeue (main step)

2. Modify head/tail pointers (finishing step)

Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

2. Get the set S of all pending ops whose record has been
previously or concurrently published

3. Help any operation in S

4. Do a finishing step

Concurrent and parallel programming
105

Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

Concurrent and parallel programming
106

phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

9

False

True

NULL

2

k

0 1 2

True

True

10

CAS

Wait-free FIFO queue

• Enqueue/Dequeue structure
2. Get the set S of all pending ops whose record has been

previously or concurrently published

Concurrent and parallel programming
107

phase

Pending

isEnqueue

Node

9

True

False

NULL

4

False

True

NULL

2

k

0 1 2

True

True

10

Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (dequeue)

a. Main step
b. Finishing step

Concurrent and parallel programming
108

9

True

False

NULL

help 0

2

H T

DU a b NULL

0 1 2

2

-1

9

True

False

CAS

CAS
0

9

False

False

CAS

Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (enqueue)

a. Main step
b. Finishing step

Concurrent and parallel programming
109

10

True

True

help 2

2

H T

DU a b NULL

0 1 2

2

0

k

1

-1

k

2

-1

NULL

CAS

Wait-free FIFO queue

• Enqueue/Dequeue structure
3. Help any operation in S (enqueue)

a. Main step
b. Finishing step

Concurrent and parallel programming
110

10

True

True

help 2

2

H T

DU a b

0 1 2

2

0

10

False

True

CAS

k

1

-1

k

2

-1

NULL

CAS

Wait-free FIFO queue

• Enqueue/Dequeue structure
1. Publish op record

2. Get the set S of all pending ops whose record has been
previously or concurrently published

3. Help any operation in S

4. Do a finishing step

Concurrent and parallel programming
111

Opt 1: help only one pending op
Opt 2: use FAD to get phase num.

Fast Wait-free FIFO queue

• Try with lock-free approach

• If starving, back-off to wait-free implementation

Concurrent and parallel programming
112

	Slide 1: Concurrent and parallel programming
	Slide 2
	Slide 3: Correctness conditions (incomplete) taxonomy
	Slide 4: Progress taxonomy
	Slide 5: Speed-up according to Sun Ni
	Slide 6
	Slide 7
	Slide 8: Concurrent data structures
	Slide 9: Set implementations
	Slide 10: Insert algorithm
	Slide 11: Insert algorithm
	Slide 12: Insert algorithm
	Slide 13: Insert algorithm
	Slide 14: Delete algorithm
	Slide 15: Delete algorithm
	Slide 16: Delete algorithm
	Slide 17: Sequential set implementation
	Slide 18: Concurrent set – Attempt 1
	Slide 19: Concurrent set – Attempt 1 (SRC)
	Slide 20: Concurrent set – Attempt 1
	Slide 21: Concurrent set – Attempt 1
	Slide 22: Concurrent set – Attempt 1
	Slide 23: Concurrent set – Attempt 2
	Slide 24: Search algorithm
	Slide 25: Search algorithm
	Slide 26: Search algorithm
	Slide 27: Search algorithm
	Slide 28: Search algorithm
	Slide 29: Search algorithm
	Slide 30: Concurrent set – Attempt 2 (SRC)
	Slide 31: Concurrent set – Attempt 2
	Slide 32: Search algorithm
	Slide 33: Search algorithm
	Slide 34: Recap
	Slide 35: Non-blocking algorithms
	Slide 36: Read-Modify-Write
	Slide 37: Compare-And-Swap
	Slide 38: Compare-And-Swap
	Slide 39: Concurrent set – Attempt 3
	Slide 40: Concurrent set – Attempt 3
	Slide 41: Non-blocking insert & delete algorithms
	Slide 42: Incorrect delete algorithm
	Slide 43: Incorrect delete algorithm
	Slide 44: Incorrect delete algorithm
	Slide 45: Incorrect delete algorithm
	Slide 46: Incorrect delete algorithm
	Slide 47: The correct delete algorithm
	Slide 48: The correct delete algorithm
	Slide 49: The correct delete algorithm
	Slide 50: Non-blocking search
	Slide 51: Non-blocking search
	Slide 52: Non-blocking search
	Slide 53: Non-blocking search
	Slide 54: Concurrent set – Attempt 3 (SRC)
	Slide 55: Concurrent set – Attempt 3 (SRC)
	Slide 56: Concurrent set – Attempt 3 (SRC)
	Slide 57: Concurrent set – Attempt 3
	Slide 58: Safety and liveness guarantees
	Slide 59: Problems & Solutions
	Slide 60: Can we do better?
	Slide 61: Lazy Linked List
	Slide 62: Lazy Linked List
	Slide 63: Lazy Linked List
	Slide 64: Lazy Linked List
	Slide 65: Lazy Linked List
	Slide 66
	Slide 67: Stack implementation
	Slide 68: Concurrent stack implementations
	Slide 69: Non-blocking stack – Attempt 1 [Treiber]
	Slide 70: Non-blocking stack – Attempt 1 [Treiber]
	Slide 71: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 72: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 73: Concurrent stack implementations
	Slide 74: Non-blocking stack – Attempt 3
	Slide 75: Observation
	Slide 76: Non-blocking stack – Attempt 3
	Slide 77: Non-blocking stack – Attempt 3
	Slide 78: Non-blocking stack – Elimination stack
	Slide 79: Non-blocking stack – Elimination stack
	Slide 80: Non-blocking stack – Attempt 3
	Slide 81
	Slide 82: Priority queue implementations
	Slide 83: Priority queue – Attempt 1
	Slide 84: Priority queue – Attempt 1
	Slide 85: Priority queues: an inherently “sequential” semantic
	Slide 86: Lazy deletion within priority queues
	Slide 87: Correct lazy deletion within priority queues
	Slide 88: Correct lazy deletion within priority queues
	Slide 89: PQ – Attempt 2 - Introducing Conflict Resiliency
	Slide 90: Priority queue – Attempt 2
	Slide 91: On the conflict resiliency trade off
	Slide 92: Conflict resiliency trade offs
	Slide 93: Priority queues – Attempt 3
	Slide 94: Open challenges
	Slide 95: Why linearizable non-blocking algorithms?
	Slide 96
	Slide 97: FIFO queue implementation
	Slide 98: FIFO queue implementation
	Slide 99: FIFO queue implementation
	Slide 100: The whole story
	Slide 101: Emptiness condition
	Slide 102: Recommended readings
	Slide 103: Wait-free FIFO queue
	Slide 104: Wait-free FIFO queue
	Slide 105: Wait-free FIFO queue
	Slide 106: Wait-free FIFO queue
	Slide 107: Wait-free FIFO queue
	Slide 108: Wait-free FIFO queue
	Slide 109: Wait-free FIFO queue
	Slide 110: Wait-free FIFO queue
	Slide 111: Wait-free FIFO queue
	Slide 112: Fast Wait-free FIFO queue

