
2019/2020

Romolo Marotta

Concurrent and parallel
programming

Lock
implementations

…zZz…

Blocking coordination

SHARED RESOURCE

Concurrent and parallel programming
3

Choosing between them is
delegated to developers!

This is a very hard task:
multiple trade offs!

SPINNING

SPIN

SPIN

Spinning vs Sleeping

Concurrent and parallel programming
4

Guaranteed low latency

Computing power savings

CS

CS

CS

CS CS CS

CPU cycles are
wasted!

Very low
latency!!!

Benefits Spinning

SLEEP

SLEEP

Spinning vs Sleeping

Concurrent and parallel programming
5

Guaranteed low latency

Computing power savings

CS

CS

CS

CS CS CS

Reduced waste
of CPU cycles!

Increased
latency!!!

WAKE
UP

WAKE
UP

Benefits Spinning Sleeping Desiderata

Waiting Policy

Autonomic Adaptivity

Spin vs Sleep – is that all?

• Choosing the proper back off scheme is very challenging

• Even implementing a simple spin lock is not trivial
◦ Trade off between low and high contented case

◦ You should have heard about algorithms for Mutual Exclusion in
Distributed Systems lectures

• E.g. Dijkstra, Bakery algorithm, Peterson...

◦ Those algorithm essentially implements spin locks by resorting
only on read/write operations

• Here, we will focus on spin locking algorithms that exploit
stronger synchronization primitives… RMW!

Concurrent and parallel programming
6

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
7

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1));

}

void release(int *lock){

*lock = 0;

}

A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second

Concurrent and parallel programming
8

1 2 3 4 5 6 6 5 4 3 2 1

while(!stop){

acquire(&lock);

flip_array();

release(&lock);

}

Results

Concurrent and parallel programming
9

#Threads

OPS/s

Ideal

TAS

Memory Model

Concurrent and parallel programming
10

cache cache cache cache

Memory

BUS

data

data

Memory Model

Concurrent and parallel programming
11

cache cache cache cache

Memory

BUS

data

data

Memory Model

Concurrent and parallel programming
12

cache cache cache cache

Memory

BUS

data

data

data

Memory Model

Concurrent and parallel programming
13

cache cache cache cache

Memory

BUS

data data

data

Memory Model

Concurrent and parallel programming
14

cache cache cache cache

Memory

BUS

data data

data

Memory Model

Concurrent and parallel programming
15

cache cache cache cache

Memory

BUS

data data

data

data

Memory Model

Concurrent and parallel programming
16

cache cache cache cache

Memory

BUS

data

data

data

Memory Model

Concurrent and parallel programming
17

cache cache cache cache

Memory

BUS

data

data

data

data

Memory Model

Concurrent and parallel programming
18

cache cache cache cache

Memory

BUS

data

data

data data

Memory Model

Concurrent and parallel programming
19

cache cache cache cache

Memory

BUS

data

data

data data

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
20

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1));

}

void release(int *lock){

*lock = 0;

}

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
21

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1));

}

void release(int *lock){

*lock = 0;

}

Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW

Concurrent and parallel programming
22

cache cache cache cache

We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly?

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1));

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
23

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
24

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
25

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
26

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
27

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
28

cache cache cache cache

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

Results

Concurrent and parallel programming
29

#Threads

OPS/s

Ideal

TAS

TTAS

Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover

Concurrent and parallel programming
30

cache cache cache cache• Lock handover costs increase with the concurrency level
• Very lightweight for the uncontended case
• Is it feasible reducing handover costs?
• AND IMPROVING FAIRNESS?

int lock = 0;

void acquire(int *lock){

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){

*lock = 0;

}

FIFO locks

Ticket locks

• Similar to the bakery algorithm but it uses RMW
instructions

• Two variables
◦ The next available ticket

◦ The served ticket

Concurrent and parallel programming
32

void acquire(tck_lock *lock){

int cur_tck;

int mytck = fetch&add(lock->ticket, 1);

while(mytck != (cur_tck = lock->current))

delay((mytck-cur_tck)*BASE);

}

void release(tck_lock *lock){ lock->current += 1; }

typedef struct _tck_lock{
int ticket = 0;

int current = 0;

} tck_lock;

Ticket locks

• Ensure fairness

• Similar structure w.r.t. TTAS spinlock
◦ One variable updated once at each acquisition (better than TTAS)

◦ Write-1-Read-N variable updated at each release (same as TTAS)

• How?

Concurrent and parallel programming
33

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
34

0 1 1 1

Ticket = 0

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
35

0 1 1 1

Ticket = 0 1

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
36

0 1 1 1

Ticket = 0 1 2

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
37

0 1 1 1

Ticket = 0 1 2 3

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
38

0 1 1 1

Ticket = 0 1 2 3

1

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
39

0 1 1 1

Ticket = 0 1 2 3

1 0

Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line

Concurrent and parallel programming
40

0 1 1 1

Ticket = 0 1 2 3

1 0

Anderson queue lock

Concurrent and parallel programming
41

cache cache cache cache

void acquire(anderson_lock *lock){

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1;

}
void release(int *lock){

lock->array[mytck+1] = 0;

}

Anderson queue lock

Concurrent and parallel programming
42

cache cache cache cache

void acquire(anderson_lock *lock){

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1;

}
void release(int *lock){

lock->array[mytck+1] = 0;

}

Anderson queue lock

Concurrent and parallel programming
43

cache cache cache cache

void acquire(anderson_lock *lock){

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1;

}
void release(int *lock){

lock->array[mytck+1] = 0;

}

Anderson queue lock

Concurrent and parallel programming
44

cache cache cache cache

void acquire(anderson_lock *lock){

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1;

}
void release(int *lock){

lock->array[mytck+1] = 0;

}

Anderson queue lock

Concurrent and parallel programming
45

cache cache cache cache

void acquire(anderson_lock *lock){

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1;

}
void release(int *lock){

lock->array[mytck+1] = 0;

}

Anderson queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)

• Cons:
◦ Increased memory footprint
◦ Each lock needs to know the maximum number of threads

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
46

CLH lock

Concurrent and parallel programming
47

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0

CLH lock

Concurrent and parallel programming
48

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1

CLH lock

Concurrent and parallel programming
49

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 1

CLH lock

Concurrent and parallel programming
50

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 10

CLH lock

Concurrent and parallel programming
51

• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
1 10

CLH queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
52

NUMA

Concurrent and parallel programming
53

CPU 0 CPU 1

CPU 2 CPU 3

Memory

Memory

Memory

Memory

LLC LLC

LLC LLC

MCS lock

Concurrent and parallel programming
54

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL

MCS lock

Concurrent and parallel programming
55

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0

MCS lock

Concurrent and parallel programming
56

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1

MCS lock

Concurrent and parallel programming
57

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1

MCS lock

Concurrent and parallel programming
58

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1 0

MCS lock

Concurrent and parallel programming
59

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0

MCS lock

Concurrent and parallel programming
60

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0NULL

CAS

MCS lock

Concurrent and parallel programming
61

• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL

CAS

MCS queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than

(T)TAS and Ticket)
◦ No-remote spinning

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ MCS, CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
62

MCS in practice: the Linux kernel case

• The Linux kernel uses a particular implementation of a MCS
lock: Qspinlock

• Additional challenge:
◦ Maintain compatibility with classical 32-bit locks
◦ MCS uses pointers (64-bit)

• Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirq, hardirq, nmi)
3. Finite number of cores

• Use an additional bit for fast lock handover

Concurrent and parallel programming
63

031 18 17 16 15 9 8 7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)

MCS in practice: the Linux kernel case

Concurrent and parallel programming
64

031 18 17 16 15 9 8 7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)

next locked

0 next locked

0

next locked

1

core 3

core 0

core 1

0

3

1

2

tail

A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second

Concurrent and parallel programming
65

1 2 3 4 5 6 6 5 4 3 2 1

while(!stop){

acquire(&lock);

flip_array();

release(&lock);

}

One lock
to rule them all…

Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8

Intel i7-7700HQ – 8 cores

tas ttas ticket bttas tqueue clh mcs mutex

Concurrent and parallel programming
67

Performance

0

500

1000

1500

2000

2500

6 12 24 36 48

AMD Opteron 6168 - 48 cores

tas ttas ticket bttas tqueue clh mcs mutex

Concurrent and parallel programming
68

At the beginning was… Spin vs Sleep

Concurrent and parallel programming
69

Guaranteed low latency

Computing power savings

Benefits Spinning Sleeping

Waiting Policy

SPIN

SPIN

CS

CS

CS

CS CS CS

SLEEP

SLEEP

CS

CS

CS

CS CS CS

WAKE
UP

WAKE
UP

SPIN:
++Waste of CPU Cycles

--Latency

Sleep:
--Waste of CPU Cycles

++Latency

How to avoid costs for sleeping?

A general approach exists:

• Reducing the frequency of sleep/wake-up pairs

• How?

Trading Fairness in favor of Throughput

• Make some thread sleep longer than others

• If the lock is highly contented, some thread willing to
access the critical section will arrive soon

• If the lock is scarcely contented, we pay lower latency as
TTAS locks

Concurrent and parallel programming
70

An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Concurrent and parallel programming
71

An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Concurrent and parallel programming
72

• Global lock
• 1000 cycles CS
• 40 cores

An example 2 – Malthusian locks

Concurrent and parallel programming
73

An example 2 – Malthusian locks

Concurrent and parallel programming
74

Recommended readings

• The Performance of Spin-Lock Alternatives for Shared-
Memory Multiprocessors
Anderson T.E., IEEE TPDS 1990

• Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors
Mellor-Crummey et al, ACM TCS 1991

• Unlocking Energy
Falsafi et al, USENIX 2016

• Malthusian Locks
Dice D., In ACM EuroSys’17

Concurrent and parallel programming
75

