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Blocking coordination

SHARED RESOURCE

Concurrent and parallel programming
3

Choosing between them is 
delegated to developers!

This is a very hard task:
multiple trade offs!



SPINNING

SPIN
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Spinning vs Sleeping
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Guaranteed low latency 

Computing power savings

CS

CS

CS

CS CS CS

CPU cycles are 
wasted!

Very low 
latency!!!

Benefits Spinning
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Spinning vs Sleeping
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Guaranteed low latency 

Computing power savings

CS

CS

CS
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Reduced waste 
of CPU cycles!

Increased 
latency!!!

WAKE
UP

WAKE
UP

Benefits Spinning Sleeping Desiderata

Waiting Policy

Autonomic Adaptivity



Spin vs Sleep – is that all?

• Choosing the proper back off scheme is very challenging

• Even implementing a simple spin lock is not trivial
◦ Trade off between low and high contented case

◦ You should have heard about algorithms for Mutual Exclusion in 
Distributed Systems lectures

• E.g. Dijkstra, Bakery algorithm, Peterson...

◦ Those algorithm essentially implements spin locks by resorting 
only on read/write operations

• Here, we will focus on spin locking algorithms that exploit 
stronger synchronization primitives… RMW!
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Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1));

}

void release(int *lock){ 

*lock = 0; 

}



A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second
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while(!stop){

acquire(&lock);

flip_array();

release(&lock);

}



Results
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#Threads

OPS/s

Ideal

TAS
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Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1));

}

void release(int *lock){ 

*lock = 0; 

}



Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1));
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void release(int *lock){ 

*lock = 0; 

}



Test-and-set spin lock

• Test-and-set lock is the simplest spin lock

• Acquiring threads always try to set a variable via RMW
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cache cache cache cache

We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly? 

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1));

}

void release(int *lock){ 

*lock = 0; 

}



Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

*lock = 0; 

}



Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

*lock = 0; 

}



Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

*lock = 0; 

}



Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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cache cache cache cache

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

*lock = 0; 

}



Results
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Test-and-test-and-set spin lock

• Like test-and-set, but spins by reading the value of the lock

• Traffic is generated only upon lock handover
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cache cache cache cache• Lock handover costs increase with the concurrency level
• Very lightweight for the uncontended case
• Is it feasible reducing handover costs?
• AND IMPROVING FAIRNESS?

int lock = 0;

void acquire(int *lock){ 

while(XCHG(lock, 1))

while(*lock);

}

void release(int *lock){ 

*lock = 0; 

}



FIFO locks



Ticket locks

• Similar to the bakery algorithm but it uses RMW 
instructions

• Two variables
◦ The next available ticket

◦ The served ticket
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void acquire(tck_lock *lock){ 

int cur_tck;

int mytck = fetch&add(lock->ticket, 1);

while(mytck != (cur_tck = lock->current) ) 

delay((mytck-cur_tck)*BASE);

}

void release(tck_lock *lock){ lock->current += 1; }

typedef struct _tck_lock{
int ticket  = 0;

int current = 0;

} tck_lock;



Ticket locks

• Ensure fairness

• Similar structure w.r.t. TTAS spinlock
◦ One variable updated once at each acquisition (better than TTAS)

◦ Write-1-Read-N variable updated at each release (same as TTAS)

• How?
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Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line
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Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line
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Anderson queue lock

• Use similar to ticket lock

• Use the ticket to obtain an individual cache line
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Anderson queue lock
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cache cache cache cache

void acquire(anderson_lock *lock){ 

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1; 

}
void release(int *lock){ 

lock->array[mytck+1] = 0;

}



Anderson queue lock
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void release(int *lock){ 

lock->array[mytck+1] = 0;

}
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Anderson queue lock
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cache cache cache cache

void acquire(anderson_lock *lock){ 

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);
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}
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lock->array[mytck+1] = 0;

}



Anderson queue lock
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cache cache cache cache

void acquire(anderson_lock *lock){ 

mytck = fetch&add(lock->ticket, 1);

while(lock->array[mytck]);

lock->array[mytck] = 1; 

}
void release(int *lock){ 

lock->array[mytck+1] = 0;

}



Anderson queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)

• Cons:
◦ Increased memory footprint
◦ Each lock needs to know the maximum number of threads

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)
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CLH lock
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1



CLH lock
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 1



CLH lock
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
0 1 10



CLH lock
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• An (implicit) linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the previous node

• Release on the new node

Lock
1 10



CLH queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming
52



NUMA
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CPU 0 CPU 1

CPU 2 CPU 3

Memory

Memory

Memory

Memory

LLC LLC

LLC LLC



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0 1 0



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
0NULL

CAS



MCS lock
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• An explicit linked list maintains the order between waiting threads

• An empty list represent an uncontended lock

• An arriving thread swaps the node with its private node

• Spin on the just inserted node

• Release on the new node

Lock
NULL

CAS



MCS queue lock

• Pros:
◦ One variable updated once at each acquisition (like Ticket lock)
◦ Write-1-Read-1 variable updated once per release (better than 

(T)TAS and Ticket)
◦ No-remote spinning

• Cons:
◦ Slightly increased memory footprint

• Let:
◦ T be the number of threads
◦ L be the number of locks

• Space Usage
◦ MCS, CLH = O(L+T)
◦ Anderson = O(LT)
◦ TAS, TTAS, Ticket = O(L)
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MCS in practice: the Linux kernel case

• The Linux kernel uses a particular implementation of a MCS 
lock: Qspinlock

• Additional challenge:
◦ Maintain compatibility with classical 32-bit locks
◦ MCS uses pointers (64-bit)

• Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirq, hardirq, nmi)
3. Finite number of cores

• Use an additional bit for fast lock handover 
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031 18  17  16  15 9  8  7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)



MCS in practice: the Linux kernel case
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031 18  17  16  15 9  8  7

locked (8 bits)unused (7 bits)core id (14 bits)

pending
(1 bits)

nesting
(2 bits)

next locked

0 next locked

0

next locked

1

core 3 

core 0 

core 1 

0

3

1

2

tail



A small benchmark

• We have an array of integers

• Each thread reverse the array

• This is done within a critical section

• Performance Metric:
◦ Throughput = #Flips per second
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1 2 3 4 5 6 6 5 4 3 2 1

while(!stop){

acquire(&lock);

flip_array();

release(&lock);

}



One lock 
to rule them all…
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Performance
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At the beginning was… Spin vs Sleep
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Guaranteed low latency 

Computing power savings

Benefits Spinning Sleeping

Waiting Policy

SPIN

SPIN
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SLEEP

SLEEP
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CS
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CS CS CS

WAKE
UP

WAKE
UP

SPIN:
++Waste of CPU Cycles

--Latency

Sleep:
--Waste of CPU Cycles

++Latency



How to avoid costs for sleeping?

A general approach exists:

• Reducing the frequency of sleep/wake-up pairs

• How?

Trading Fairness in favor of Throughput

• Make some thread sleep longer than others

• If the lock is highly contented, some thread willing to 
access the critical section will arrive soon

• If the lock is scarcely contented, we pay lower latency as 
TTAS locks
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An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and 
energy efficiency
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An example - MutexEE

• MutexEE is a pthread_mutex optimized for throughput and 
energy efficiency
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• Global lock
• 1000 cycles CS
• 40 cores



An example 2 – Malthusian locks
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An example 2 – Malthusian locks
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