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Choosing between them is This is a very hard task:
delegated to developers! multiple trade offs!
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Spinning vs Sleeping

Benefits Spinning
Guaranteed low latency V4
Computing power savings x
CS >
SPIN CS >
ﬂ SPIN CS >
CPU cycles are
wasted! CS CS CS >
Very low
latency!!!
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Spinning vs Sleeping

Waiting Policy
Benefits Spinning Sleeping
Guaranteed low latency V4 X
Computing power savings x \/
Autonomic Adaptivity x x
CS >
WAKE
SLEEP | "p cs >
SLEEP el s ——
Reduced waste
of CPU cycles! CS CS CS —
Increased
latency!!!
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Spin vs Sleep — is that all?

* Choosing the proper back off scheme is very challenging

* Even implementing a simple spin lock is not trivial
o Trade off between low and high contented case

> You should have heard about algorithms for Mutual Exclusion in
Distributed Systems lectures

* E.g. Dijkstra, Bakery algorithm, Peterson...

o Those algorithm essentially implements spin locks by resorting
only on read/write operations

* Here, we will focus on spin locking algorithms that exploit
stronger synchronization primitives... RMW!
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Test-and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){
while (XCHG(lock, 1)); *lock = O;
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A small benchmark

* We have an array of integers
e Each thread reverse the array

1/2|3|4|5|6| === |6|5|4|3]|2]1

* This is done within a critical section
while(!stop){
acquire(&lock);
flip _array();
release(&lock);

¥

* Performance Metric:
o Throughput = #Flips per second
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Results
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Test-and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){
while (XCHG(lock, 1)); *lock = O;
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Test-

and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)); *lock = 0;
4 )
We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly?
N J
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Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*lock); }
}
[_cache ] [_cache ] [cache 1  [_cache ]
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Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
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Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*lock); }
}
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Results
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Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *1lock){
while (XCHG(lock, 1)) *lock = O;
while(*lock); }

~

(e Lock handover costs increase with the concurrency level
* Very lightweight for the uncontended case
* |sit feasible reducing handover costs?

> AND IMPROVING FAIRNESS? )
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Ticket locks

 Similar to the bakery algorithm but it uses RMW
instructions

typedef struct tck lock{
int ticket = 0;

int current = 0;
} tck lock;

e Two variables
o The next available ticket
o The served ticket

void acquire(tck lock *lock){
int cur_tck;
int mytck = fetch&add(lock->ticket, 1);
while(mytck != (cur_tck = lock->current) )
delay((mytck-cur_tck)*BASE);
}

void release(tck lock *lock){ lock->current += 1; }
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Ticket locks

* Ensure fairness

* Similar structure w.r.t. TTAS spinlock

o One variable updated once at each acquisition (better than TTAS)
o Write-1-Read-N variable updated at each release (same as TTAS)

e How?
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Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket =0

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket =61
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Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line
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Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket ==6=4=2- 3
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Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line
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Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = void release(int *lock){

lock->array[mytck+1] =
}

| cache | | cache | cache | cache |
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Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
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Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = 1; void release(int *1lock){

lock->array[mytck+1l] = 0;
}

| cache | | cache | | cache | | cache |
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Anderson queue lock

* Pros:

o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

* Cons:
o |ncreased memory footprint
o Each lock needs to know the maximum number of threads

° Let:

o T be the number of threads
o L be the number of locks

* Space Usage

o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)
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CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock
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CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node
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CLH queue lock

* Pros:
o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

* Cons:
o Slightly increased memory footprint

° Let:

o T be the number of threads
o L be the number of locks

* Space Usage
o CLH = O(L+T)
o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)
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MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock

NULL

®
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MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lockg\gp?\?/ \.
= NULL 0

y

A

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node
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MCS queue lock

* Pros:
o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

o No-remote spinning

* Cons:
o Slightly increased memory footprint

* Let:
o T be the number of threads
o L be the number of locks

* Space Usage
o MCS, CLH = O(L+T)
o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)
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MCS in practice: the Linux kernel case

* The Linux kernel uses a particular implementation of a MCS
lock: Qspinlock

e Additional challenge:
o Maintain compatibility with classical 32-bit locks
o MCS uses pointers (64-bit)

 Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirg, hardirg, nmi)
3. Finite number of cores

e Use an additional bit for fast lock handover

31 18 17 16 15 987 0
core id (14 bits) e | unused (7 bits)| locked (8 bits)
nesting __ 1+ . S pending
(2 bits) (1 bits)
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MCS in practice: the Linux kernel case

nesting -
(2 bits) 1

31 18 17:16 15 987 0

core id (14 bits) ¢ |unused (7 bits)| locked (8 bits)
‘ v / i
tail pending _ . ‘
! (1 bits)
core 3 : core 1
next locked |<----: core 0 next locked
0 ' next locked * !
—
° 0

Concurrent and parallel programming




A small benchmark

* We have an array of integers
e Each thread reverse the array

1/2|3|4|5|6| === |6|5|4|3]|2]1

* This is done within a critical section
while(!stop){
acquire(&lock);
flip _array();
release(&lock);

¥

* Performance Metric:
o Throughput = #Flips per second
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One lock
to rule them all...




Performance

9000

8000

7000

6000

5000

4000

3000

2000

1000

Intel i7-7700HQ — 8 cores

——
4 6
—ta3s =—ttas ticket bttas =—tqueue clh mcs

Concurrent and parallel programming

mutex



Performance
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At the beginning was... Spin vs Sleep

Waiting Policy
Benefits Spinning Sleeping
Guaranteed low latency V4 X
Computing power savings x \/
CS >
SPIN CS SPIN:
g ++Waste of CPU Cycles
S & > --Latency
cs cs cs >
CS >
Sleep: | SLEep | e cs >
--Waste of CPU Cycles —
SLEEP - cs —
++Latency
cs cs cs —
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How to avoid costs for sleeping?

A general approach exists:
* Reducing the frequency of sleep/wake-up pairs
* How?
=== Trading Fairness in favor of Throughput
* Make some thread sleep longer than others

* If the lock is highly contented, some thread willing to
access the critical section will arrive soon

* If the lock is scarcely contented, we pay lower latency as
TTAS locks
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An example - MutexEE

* MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

MUTEX MUTEXEE

| OCk() For up to 100 attempts For up to ~8000 cycles
spin with pause spin with mfence
If still busy, sleep

MUTEX MUTEXEE

release in user space (lock->locked = 0)

unlock)

wait in user space (~300 cycles)
wake up a thread
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An example - MutexEE

* MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Throughput
@ 3 B
g  Global lock
c | * 1000 cycles CS
32 e 40 cores
5
Q
L 1 I
(@)
-
O
ol
1 10 20 30 40 50 60
# Threads
MUTEX -+« TAS —+ TTAS -e- TICKET = MCS -+ MUTEXEE =
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An example 2 — Malthusian locks

Passive Set
Non-Critical
Section
Threads
T T
[ —t
T T
0

T T
T T
T TT
T T

]

2
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An example 2 — Malthusian locks

Aggregate throughput rate : steps/sec

500000 1000000 1500000

0

0 MC5-5
o MCS-5TP
& MCSCR-5

4 - . e
MCSCR-ST Pipeline Competition

Waiters vs Active

Spin-then-Park vs
FIFO
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