Concurrent and parallel

programming

S APIENZA 2019/2020

UNIVERSITA DI ROMA Romolo Marotta




Lock
Implementations




Blocking coordination

' SHARED RESOURCE
@ @ L] ™~
o) | W

o /

Choosing between them is This is a very hard task:
delegated to developers! multiple trade offs!

Concurrent and parallel programming
3



Spinning vs Sleeping

Benefits Spinning
Guaranteed low latency V4
Computing power savings x
CS >
SPIN CS >
ﬂ SPIN CS >
CPU cycles are
wasted! CS CS CS >
Very low
latency!!!

Concurrent and parallel programming
4



Spinning vs Sleeping

Waiting Policy
Benefits Spinning Sleeping
Guaranteed low latency V4 X
Computing power savings x \/
Autonomic Adaptivity x x
CS >
WAKE
SLEEP | "p cs >
SLEEP el s ——
Reduced waste
of CPU cycles! CS CS CS —
Increased
latency!!!

Concurrent and parallel programming
)



Spin vs Sleep — is that all?

* Choosing the proper back off scheme is very challenging

* Even implementing a simple spin lock is not trivial
o Trade off between low and high contented case

> You should have heard about algorithms for Mutual Exclusion in
Distributed Systems lectures

* E.g. Dijkstra, Bakery algorithm, Peterson...

o Those algorithm essentially implements spin locks by resorting
only on read/write operations

* Here, we will focus on spin locking algorithms that exploit
stronger synchronization primitives... RMW!

Concurrent and parallel programming
6



Test-and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){
while (XCHG(lock, 1)); *lock = O;

Concurrent and parallel programming
7



A small benchmark

* We have an array of integers
e Each thread reverse the array

1/2|3|4|5|6| === |6|5|4|3]|2]1

* This is done within a critical section
while(!stop){
acquire(&lock);
flip _array();
release(&lock);

¥

* Performance Metric:
o Throughput = #Flips per second

Concurrent and parallel programming
8



Results

|deal

OPS/s

TAS
—>

>

HThreads

Concurrent and parallel programming
9



Memory Model

Memory

< BUS

)

8 8 @

8

| cache | cache cache

cache

@

@
<P

Concurrent and parallel programming

@



Memory Model




Memory Model




Memory Model




Memory Model




Memory Model




Memory Model




Memory Model




Memory Model




Memory Model




Test-and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){
while (XCHG(lock, 1)); *lock = O;

| cache | | cache | | cache | | cache |

W & W W

<» 1

Concurrent and parallel programming




Test-and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){
while (XCHG(lock, 1)); *lock = O;

cache | | cache | | cache | | cache |

W & W W

<» 1

Concurrent and parallel programming




Test-

and-set spin lock

e Test-and-set lock is the simplest spin lock
* Acquiring threads always try to set a variable via RMW

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)); *lock = 0;
4 )
We can reduce the impact of memory traffic by introducing exponential back off!
But how to set it properly?
N J

Concurrent and parallel programming



Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*lock); }
}
[_cache ] [_cache ] [cache 1  [_cache ]

W & W @

o> i) Coo oo

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*1lock); }
}
cache | cache | | cache | | cache |

L o 4 4

o> i) Coo oo

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*1lock); }
}
[_cache ] [_cache ] [cache 1  [_cache ]

W W&

oo @b e e

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*1lock); }
}
[ cache ] [ Wcache | [cache 1  [_cache ]

% W

oo @b e e

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*lock); }
}
|Icache | [_cache ] | cale | [_clche

w?

o @
oo @b oo e

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *lock){

while (XCHG(lock, 1)) *lock = O;
while(*lock); }
}
cache cache | cache | | cache |

@ @ W

1 CREED

Concurrent and parallel programming




Results

|deal

OPS/s TTAS

TAS
—>

>

HThreads

Concurrent and parallel programming




Test-and-test-and-set spin lock

* Like test-and-set, but spins by reading the value of the lock
* Traffic is generated only upon lock handover

int lock = 0;
void acquire(int *lock){ void release(int *1lock){
while (XCHG(lock, 1)) *lock = O;
while(*lock); }

~

(e Lock handover costs increase with the concurrency level
* Very lightweight for the uncontended case
* |sit feasible reducing handover costs?

> AND IMPROVING FAIRNESS? )

Concurrent and parallel programming




FIFO locks




Ticket locks

 Similar to the bakery algorithm but it uses RMW
instructions

typedef struct tck lock{
int ticket = 0;

int current = 0;
} tck lock;

e Two variables
o The next available ticket
o The served ticket

void acquire(tck lock *lock){
int cur_tck;
int mytck = fetch&add(lock->ticket, 1);
while(mytck != (cur_tck = lock->current) )
delay((mytck-cur_tck)*BASE);
}

void release(tck lock *lock){ lock->current += 1; }

Concurrent and parallel programming




Ticket locks

* Ensure fairness

* Similar structure w.r.t. TTAS spinlock

o One variable updated once at each acquisition (better than TTAS)
o Write-1-Read-N variable updated at each release (same as TTAS)

e How?

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket =0

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket =61

0 1 1 1

%

[

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket =6=4= 2

0 1 1 1

W
1) (o)

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket ==6=4=2- 3

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket ==6=4=2- 3

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket ==6=4=2- 3

Concurrent and parallel programming




Anderson queue lock

e Use similar to ticket lock
e Use the ticket to obtain an individual cache line

Ticket ==6=4=2- 3

%=1 =d= () 1 1

W
1 (o)

Concurrent and parallel programming




Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = void release(int *lock){

lock->array[mytck+1] =
}

| cache | | cache | cache | cache |

w @ R
o @ @ @

Concurrent and parallel programming




Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = void release(int *lock){

lock->array[mytck+1] =
}

cache | cache | cache | cache |

L o @@9

<> 1

Concurrent and parallel programming




Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = void release(int *lock){

lock->array[mytck+1] =
}

cache | cache | cache | cache |

"= @@9

(o> 1

Concurrent and parallel programming




Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = void release(int *lock){

lock->array[mytck+1] =
}

cache | cache | cache | cache |

L & @@H

(o> 1

Concurrent and parallel programming




Anderson queue lock

void acquire(anderson_lock *lock){
mytck = fetch&add(lock->ticket, 1);
while(lock->array[mytck]);

lock->array[mytck] = 1; void release(int *1lock){

lock->array[mytck+1l] = 0;
}

| cache | | cache | | cache | | cache |

> @ &

o> a> (oo

Concurrent and parallel programming




Anderson queue lock

* Pros:

o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

* Cons:
o |ncreased memory footprint
o Each lock needs to know the maximum number of threads

° Let:

o T be the number of threads
o L be the number of locks

* Space Usage

o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming




CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock

Concurrent and parallel programming




CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock/ —

Concurrent and parallel programming




CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock / \.

Concurrent and parallel programming




CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock/ \.

Concurrent and parallel programming




CLH lock

* An (implicit) linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the previous node

* Release on the new node

Lock / \.

sl
“
L4

Concurrent and parallel programming




CLH queue lock

* Pros:
o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

* Cons:
o Slightly increased memory footprint

° Let:

o T be the number of threads
o L be the number of locks

* Space Usage
o CLH = O(L+T)
o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming




NUMA

A 4

CPU 1

LLC

CPUO
Memory - > <
LLC
CPU 2
Memory -« > “
LLC

Concurrent and parallel programming

A 4

CPU 3

LLC

A

A

A 4

Memory

A 4

Memory




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock

NULL

®
A 4

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock/ —

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock / \.

w?
g7 oo

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock / \.

w?
g7 oo

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock / \.

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lock / \.
o

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

Lockg\gp?\?/ \.
= NULL 0

y

A

Concurrent and parallel programming




MCS lock

* An explicit linked list maintains the order between waiting threads
* An empty list represent an uncontended lock

* An arriving thread swaps the node with its private node

e Spin on the just inserted node

* Release on the new node

oo
= NULL

y

A

Concurrent and parallel programming




MCS queue lock

* Pros:
o One variable updated once at each acquisition (like Ticket lock)

o Write-1-Read-1 variable updated once per release (better than
(T)TAS and Ticket)

o No-remote spinning

* Cons:
o Slightly increased memory footprint

* Let:
o T be the number of threads
o L be the number of locks

* Space Usage
o MCS, CLH = O(L+T)
o Anderson = O(LT)
o TAS, TTAS, Ticket = O(L)

Concurrent and parallel programming




MCS in practice: the Linux kernel case

* The Linux kernel uses a particular implementation of a MCS
lock: Qspinlock

e Additional challenge:
o Maintain compatibility with classical 32-bit locks
o MCS uses pointers (64-bit)

 Compact data:
1. No recursion of same context in critical sections
2. 4 different contexts (task, softirg, hardirg, nmi)
3. Finite number of cores

e Use an additional bit for fast lock handover

31 18 17 16 15 987 0
core id (14 bits) e | unused (7 bits)| locked (8 bits)
nesting __ 1+ . S pending
(2 bits) (1 bits)

Concurrent and parallel programming




MCS in practice: the Linux kernel case

nesting -
(2 bits) 1

31 18 17:16 15 987 0

core id (14 bits) ¢ |unused (7 bits)| locked (8 bits)
‘ v / i
tail pending _ . ‘
! (1 bits)
core 3 : core 1
next locked |<----: core 0 next locked
0 ' next locked * !
—
° 0

Concurrent and parallel programming




A small benchmark

* We have an array of integers
e Each thread reverse the array

1/2|3|4|5|6| === |6|5|4|3]|2]1

* This is done within a critical section
while(!stop){
acquire(&lock);
flip _array();
release(&lock);

¥

* Performance Metric:
o Throughput = #Flips per second

Concurrent and parallel programming




One lock
to rule them all...




Performance

9000

8000

7000

6000

5000

4000

3000

2000

1000

Intel i7-7700HQ — 8 cores

——
4 6
—ta3s =—ttas ticket bttas =—tqueue clh mcs

Concurrent and parallel programming

mutex



Performance

AMD Opteron 6168 - 48 cores
2500

2000

1500

1000

500

6 12 24 36 48

—ta3s =—ttas ticket bttas =—tqueue clh mcs mutex

Concurrent and parallel programming




At the beginning was... Spin vs Sleep

Waiting Policy
Benefits Spinning Sleeping
Guaranteed low latency V4 X
Computing power savings x \/
CS >
SPIN CS SPIN:
g ++Waste of CPU Cycles
S & > --Latency
cs cs cs >
CS >
Sleep: | SLEep | e cs >
--Waste of CPU Cycles —
SLEEP - cs —
++Latency
cs cs cs —

Concurrent and parallel programming




How to avoid costs for sleeping?

A general approach exists:
* Reducing the frequency of sleep/wake-up pairs
* How?
=== Trading Fairness in favor of Throughput
* Make some thread sleep longer than others

* If the lock is highly contented, some thread willing to
access the critical section will arrive soon

* If the lock is scarcely contented, we pay lower latency as
TTAS locks

Concurrent and parallel programming




An example - MutexEE

* MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

MUTEX MUTEXEE

| OCk() For up to 100 attempts For up to ~8000 cycles
spin with pause spin with mfence
If still busy, sleep

MUTEX MUTEXEE

release in user space (lock->locked = 0)

unlock)

wait in user space (~300 cycles)
wake up a thread

Concurrent and parallel programming




An example - MutexEE

* MutexEE is a pthread_mutex optimized for throughput and
energy efficiency

Throughput
@ 3 B
g  Global lock
c | * 1000 cycles CS
32 e 40 cores
5
Q
L 1 I
(@)
-
O
ol
1 10 20 30 40 50 60
# Threads
MUTEX -+« TAS —+ TTAS -e- TICKET = MCS -+ MUTEXEE =

Concurrent and parallel programming




An example 2 — Malthusian locks

Passive Set
Non-Critical
Section
Threads
T T
[ —t
T T
0

T T
T T
T TT
T T

]

2

Concurrent and parallel programming




An example 2 — Malthusian locks

Aggregate throughput rate : steps/sec

500000 1000000 1500000

0

0 MC5-5
o MCS-5TP
& MCSCR-5

4 - . e
MCSCR-ST Pipeline Competition

Waiters vs Active

Spin-then-Park vs
FIFO

Concurrent and parallel programming




Recommended readings

* The Performance of Spin-Lock Alternatives for Shared-

Memory Multiprocessors
Anderson T.E., IEEE TPDS 1990

* Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors
Mellor-Crummey et al, ACM TCS 1991

* Unlocking Energy
Falsafi et al, USENIX 2016

e Malthusian Locks
Dice D., In ACM EuroSys’17

Concurrent and parallel programming




