
Romolo Marotta

Concurrent and parallel
programming

Trend in processor technology

Concurrent and parallel programming
3

Liveness
might be impaired due to the arbitration of accesses

On concurrent programming

Concurrent and parallel programming
4

…zZz…

SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because

of waste of clock cycles

Parallel programming

• Ad-hoc concurrent programming languages

• Development tools
◦ Compilers

◦ MPI, OpenMP, libraries

◦ Tools to debug parallel code (gdb, valgrind)

• Writing parallel code is an art
◦ There are approaches, not prepackaged solutions

◦ Every machine has its own singularities

◦ Every problem to face has different requisites

◦ The most efficient parallel algorithm might not be the most
intuitive one

Concurrent and parallel programming
5

What do we want from parallel programs?

• Safety: nothing wrong happens (Correctness)
◦ parallel versions of our programs should be correct as

their sequential implementations

• Liveliness: something good happens eventually
(Progress)

◦ if a sequential program terminates with a given input,
we want that its parallel alternative also completes with
the same input

• Performance
◦ we want to exploit our parallel hardware

Concurrent and parallel programming
6

Concurrent and parallel programming
7

Correctness conditions
Progress conditions

Performance

Classical approach to concurrent programming

Based on blocking primitives
◦ Semaphores

◦ Locks acquiring

◦ Simple??

Concurrent and parallel programming
8

PRODUCER

1. Semaphore p, c = 0;

2. Buffer b;

3.

4. while(1) {

5. wait(c);

6. <Write on b>

7. signal(p);

8. }

CONSUMER

1. Semaphore p, c = 0;

2. Buffer b;

3.

4. while(1) {

5. wait(p);

6. <Read from b>

7. signal(c);

8. }

Correctness

• What does it mean for a program to be correct?
◦ What’s exactly a concurrent FIFO queue?

◦ FIFO implies a strict temporal ordering

◦ Concurrency implies an ambiguous temporal ordering

• Intuitively, if we rely on locks, changes happen in a non-
interleaved fashion, resembling a sequential execution

• We can say a concurrent execution is correct only because
we can associate it with a sequential one, which we know
the functioning of

• An execution is correct if it is equivalent to a correct
sequential execution

Concurrent and parallel programming
9

Correctness

• An is correct if it is equivalent to a correct

Concurrent and parallel programming
10

sequential execution
execution

sequential execution
execution

A simplified model of a concurrent system

• A concurrent system is a collection of sequential
threads/processes that communicate through shared data
structures called objects.

• An object has a unique name and a set of primitive
operations.

Concurrent and parallel programming
11

A simplified model of a concurrent execution

• A history is a sequence of invocations and replies generated
on an object by a set of threads

• Invocation:

Concurrent and parallel programming
12

A op(args*) xthread id object instance

method name

list of parameters

• Reply:

A ret(res*) x

list of returned values

reply token

A simplified model of a concurrent execution

• A sequential history is a history where all the invocations
have an immediate response

• A concurrent history is a history that is not sequential

Concurrent and parallel programming
13

Sequential

H’: A op() x
A ret() x
B op() x
B ret() x
A op() y
A ret() y

Concurrent

H: A op() x
B op() x
A ret() x
A op() y
B ret() x
A ret() y

Correctness

Concurrent and parallel programming
14

 A history is correct if it is to a correct
sequential history

equivalentequivalent

• An is correct if it is equivalent to a correct
sequential execution

execution

A simplified model of a concurrent execution

• A process subhistory H|P of a history H is the subsequence
of all events in H whose process names are P

Concurrent and parallel programming
15

H: A op() x
B op() x
A ret() x
A op() y
B ret() x
A ret() y

H|A: A op() x
A ret() x
A op() y
A ret() y

• Process subhistories are always sequential

H: A op() x

A ret() x
A op() y

A ret() y

Equivalence between histories

• Two histories H and H’ are equivalent if for every process P,
H|P=H’|P

Concurrent and parallel programming
17

H: A op() x
B op() x
A ret() x
A op() y
B ret() x
A ret() y

H|A:
H’|A: A op() x

A ret() x
A op() y
A ret() y

H’: B op() x
B ret() x
A op() x
A ret() x
A op() y
A ret() y

H: A op() x

A ret() x
A op() y

A ret() y

H’:

A op() x
A ret() x
A op() y
A ret() y

H|B:
H’|B: B op() x

B ret() x

H:
B op() x

B ret() x

H’: B op() x
B ret() x

Correctness conditions

• A is correct if it is equivalent to a
correct

Concurrent and parallel programming
18

sequential execution
concurrent execution

 A history is correct if it is to a correct
sequential history

equivalent
which satisfies a given correctness

condition

• A correctness condition specifies the set of histories to be
considered as reference

In order to implement correctly a concurrent object wrt a
correctness condition, we must guarantee that every
possible history on our implementation satisfies the
correctness condition

Sequential Consistency [Lamport 1970]

• A history H is sequentially consistent if

1. it is equivalent to a sequential history S

2. S is legal according to the sequential definition of the
object

 An object implementation is sequentially consistent if
every history associated with its usage is sequentially
consistent

Concurrent and parallel programming
19

Sequential Consistency [Lamport 1970]

Concurrent and parallel programming
20

Enq(1)

B

A

Enq(2) Deq(2)

A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

Sequential Consistency [Lamport 1970]

Concurrent and parallel programming
21

A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

H:

A Enq(1) x

A ret() x

H|A: B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

H|B:

B Enq(2) x

B ret() x

A Enq(1) x

A ret() x

B Deq(2) x

B ret() x

H’:

• H’ is legal and sequential
• H is equivalent to H’
• H is correct w.r.t sequential consistency

Linearizability [Herlihy 1990]

• A concurrent execution is linearizable if:
◦ Each procedure appears to be executed in an indivisible point

(linearization point) between its invocation and completion

◦ The order among those points is correct according to the
sequential definition of objects

Concurrent and parallel programming
22

Linearizability [Herlihy 1990]

Concurrent and parallel programming
23

Enq(1)

B

A

Enq(2) Deq(2)

Linearizability [Herlihy 1990]

Concurrent and parallel programming
25

Enq(1)

B

A

Enq(2) Deq(2)

Linearizability [Herlihy 1990]

• A history H is linearizable if:

1. it is equivalent to sequential history S

2. S is correct according to the sequential definition of
objects

3. If a response precedes an invocation in the original
history, then it must precede it in the sequential one as
well

 An object implementation is linearizable if every history
associated with its usage can be linearized

Concurrent and parallel programming
26

Linearizability [Herlihy 1990]

• Linearizability requires:
◦ Sequential Consistency

◦ Real-time order

• Linearizability ⇒ Sequential Consistency

• The composition of linearizable histories is still linearizable

• Linearizability is a local property (closed under composition)

Concurrent and parallel programming
27

Quick look on transaction correctness conditions

• We can see a transaction as a set of procedures on different
object that has to appear as atomic

• Serializability requires that transactions appear to execute
sequentially, i.e., without interleaving.

◦ A sort of sequential consistency for multi-object atomic
procedures

• Strict-Serializability requires the transactions’ order in the
sequential history is compatible with their precedence
order

◦ A sort of linearizability for multi-object atomic procedures

Concurrent and parallel programming
28

Strict Serializability

A bird’s eye view on correctness conditions

Concurrent and parallel programming
29

Serializability

Sequential
Consistency

Linearizability

Opacity

These predicate only on
committed transactions

It restricts also aborted transactions
(required for Transactional Memory)

Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a
sequential order

Respects program order
in each thread

Consistent with
real-time ordering

Access multiple objects
atomically

Locality

Concurrent and parallel programming
31

Concurrent and parallel programming
32

Correctness conditions
Progress conditions

Performance

Progress conditions

• Deadlock-freedom:
◦ Some thread acquires a lock eventually

• Starvation-freedom:
◦ Every thread acquires a lock eventually

Concurrent and parallel programming
33

Blocking synchronization

Concurrent and parallel programming
34

…zZz…

SHARED RESOURCE

The scheduler should guarantee
that the thread holding the lock

completes its critical section

Scheduler’s role

Progress conditions on multiprocessors

• Are not only about guarantees provided by a method
implementation

• Are also about the scheduling support needed to provide
progress

Requirement for lock-based applications

• Fair histories

Every thread takes an infinite number of concrete steps

Concurrent and parallel programming
35

Progress conditions

• Deadlock-freedom:
◦ Some thread acquires a lock eventually

◦ Some method call completes in every fair execution

• Starvation-freedom:
◦ Every thread acquires a lock eventually

◦ Every method call completes in every fair execution

• Lock-freedom:
◦ Some method call completes in every execution

• Wait-freedom:
◦ Every method call completes in every execution

• Obstruction-freedom:
◦ Every method call, which executes in isolation, completes

Concurrent and parallel programming
36

Progress taxonomy

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Deadlock
freedom

Concurrent and parallel programming
37

Independent Dependent

Non-blocking Blocking

For everyone -
Thread executes in

isolation
Fairness

For someone - Fairness

Progress taxonomy

Concurrent and parallel programming
40

Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Concurrent and parallel programming
41

• The Einsteinium of progress conditions: it does not exist in nature
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom

Concurrent and parallel programming
42

Correctness conditions
Progress conditions

Performance

The cost of synchronization

Concurrent and parallel programming
43

…zZz…

SHARED RESOURCE

The cost of synchronization

Concurrent and parallel programming
44

1x

2x

4x

1.5x 1.8x

Amdahl Law – Fixed-size Model (1967)

Concurrent and parallel programming
45

Amdahl Law – Fixed-size Model (1967)

• The workload is fixed: it studies how the behavior of the
same program varies when adding more computing power

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
𝑇𝑠

𝑇𝑝
=

𝑇𝑠

𝛼𝑇𝑠 + (1 − 𝛼)
𝑇𝑠
𝑝

=
1

𝛼 +
(1 − 𝛼)

𝑝

• where:
◦ 𝛼 ∈ [0,1]: Serial fraction of the program

◦ 𝑝 ∈ 𝑁: Number of processors

◦ 𝑇𝑠 : Serial execution time

◦ 𝑇𝑝 : Parallel execution time

• It can be expressed as well vs. the parallel fraction
𝑃 = 1 − 𝛼

Concurrent and parallel programming
46

Amdahl Law – Fixed-size Model (1967)

Concurrent and parallel programming
47

How real is this?

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 = lim
𝑝→∞

1

𝛼 +
(1 − 𝛼)

𝑝

=
1

𝛼

• If the sequential fraction is 20%, we have:

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

0.2
=5

• Speedup 5 using infinite processors!

Concurrent and parallel programming
48

Fixed-time model

Concurrent and parallel programming
49

Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the behavior of
the scaled program varies when adding more computing
power

𝑊′ = 𝛼𝑊 + 1 − 𝛼 𝑝𝑊

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 =
𝑊′

𝑊
= 𝛼 + 1 − 𝛼 𝑝

• where:
◦ 𝛼 ∈ [0,1]: Serial fraction of the program
◦ 𝑝 ∈ 𝑁: Number of processors
◦ 𝑊 : Original workload
◦ 𝑊′ : Scaled workload

Concurrent and parallel programming
50

Speed-up according to Gustafson

Concurrent and parallel programming
51

Memory-bounded model

Concurrent and parallel programming
52

Sun Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

𝛼𝑊 + 1 − 𝛼 𝐺 𝑝
𝑊
𝑝

=
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• where:
◦ 𝐺(𝑝) describes the workload increase as the memory capacity

increases

◦ 𝑊∗ = 𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

Concurrent and parallel programming
53

Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼

𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general, 𝐺 𝑝 > 𝑝 gives a higher scale-up

Concurrent and parallel programming
54

Superlinear speedup

• Can we have a Speed-up > p ?
◦ Workload increases more than computing power (G(p) > p)

◦ Cache effect: larger accumulated cache size. More or even all of
the working set can fit into caches and the memory access time
reduces dramatically

◦ RAM effect: enables the dataset to move from disk into RAM
drastically reducing the time required, e.g., to search it.

Concurrent and parallel programming
55

Yes!

Scalability

• Efficiency

𝐸 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

#𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

• Strong Scalability: If the efficiency is kept fixed while the
number of processes and maintain fixed the problem size

• Weak Scalability: If the efficiency is kept fixed while
increasing at the same rate the problem size and the
number of processes

Concurrent and parallel programming
56

Recommended readings

Concurrent and parallel programming
57

• Linearizability: A correctness condition for concurrent
objects
M. Herlihy et al. , ACM TOPLAS, 1990

• On the nature of progress
M. Herlihy et al., OPODIS’11.

• Another View on Parallel Speedup
Sun et all., Supercomputing ‘90

	Slide 1: Concurrent and parallel programming
	Slide 3: Trend in processor technology
	Slide 4: On concurrent programming
	Slide 5: Parallel programming
	Slide 6: What do we want from parallel programs?
	Slide 7
	Slide 8: Classical approach to concurrent programming
	Slide 9: Correctness
	Slide 10: Correctness
	Slide 11: A simplified model of a concurrent system
	Slide 12: A simplified model of a concurrent execution
	Slide 13: A simplified model of a concurrent execution
	Slide 14: Correctness
	Slide 15: A simplified model of a concurrent execution
	Slide 17: Equivalence between histories
	Slide 18: Correctness conditions
	Slide 19: Sequential Consistency [Lamport 1970]
	Slide 20: Sequential Consistency [Lamport 1970]
	Slide 21: Sequential Consistency [Lamport 1970]
	Slide 22: Linearizability [Herlihy 1990]
	Slide 23: Linearizability [Herlihy 1990]
	Slide 25: Linearizability [Herlihy 1990]
	Slide 26: Linearizability [Herlihy 1990]
	Slide 27: Linearizability [Herlihy 1990]
	Slide 28: Quick look on transaction correctness conditions
	Slide 29: A bird’s eye view on correctness conditions
	Slide 31: Correctness conditions (incomplete) taxonomy
	Slide 32
	Slide 33: Progress conditions
	Slide 34: Blocking synchronization
	Slide 35: Scheduler’s role
	Slide 36: Progress conditions
	Slide 37: Progress taxonomy
	Slide 40: Progress taxonomy
	Slide 41: Progress taxonomy
	Slide 42
	Slide 43: The cost of synchronization
	Slide 44: The cost of synchronization
	Slide 45: Amdahl Law – Fixed-size Model (1967)
	Slide 46: Amdahl Law – Fixed-size Model (1967)
	Slide 47: Amdahl Law – Fixed-size Model (1967)
	Slide 48: How real is this?
	Slide 49: Fixed-time model
	Slide 50: Gustafson Law—Fixed-time Model (1989)
	Slide 51: Speed-up according to Gustafson
	Slide 52: Memory-bounded model
	Slide 53: Sun Ni Law—Memory-bounded Model (1993)
	Slide 54: Speed-up according to Sun Ni
	Slide 55: Superlinear speedup
	Slide 56: Scalability
	Slide 57: Recommended readings

