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Liveness
might be impaired due to the arbitration of accesses

On concurrent programming 
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SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because 

of waste of clock cycles



Parallel programming

• Ad-hoc concurrent programming languages

• Development tools
◦ Compilers 

◦ MPI, OpenMP, libraries

◦ Tools to debug parallel code (gdb, valgrind)

• Writing parallel code is an art
◦ There are approaches, not prepackaged solutions

◦ Every machine has its own singularities

◦ Every problem to face has different requisites

◦ The most efficient parallel algorithm might not be the most 
intuitive one
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What do we want from parallel programs?

• Safety: nothing wrong happens (Correctness)
◦ parallel versions of our programs should be correct as 

their sequential implementations

• Liveliness: something good happens eventually 
(Progress)

◦ if a sequential program terminates with a given input, 
we want that its parallel alternative also completes with 
the same input

• Performance
◦ we want to exploit our parallel hardware
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Correctness conditions
Progress conditions

Performance



Classical approach to concurrent programming

Based on blocking primitives
◦ Semaphores

◦ Locks acquiring

◦ Simple??
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PRODUCER

1. Semaphore p, c = 0;

2. Buffer b;

3.  

4. while(1) {

5. wait(c);

6. <Write on b>

7. signal(p);

8. }

CONSUMER

1. Semaphore p, c = 0;

2. Buffer b;

3.  

4. while(1) {

5. wait(p);

6. <Read from b>

7. signal(c);

8. }



Correctness

• What does it mean for a program to be correct?
◦ What’s exactly a concurrent FIFO queue?

◦ FIFO implies a strict temporal ordering

◦ Concurrency implies an ambiguous temporal ordering

• Intuitively, if we rely on locks, changes happen in a non-
interleaved fashion, resembling a sequential execution

• We can say a concurrent execution is correct only because 
we can associate it with a sequential one, which we know 
the functioning of

• An execution is correct if it is equivalent to a correct 
sequential execution
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Correctness

• An                     is correct if it is equivalent to a correct
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sequential execution
execution

sequential execution
execution



A simplified model of a concurrent system

• A concurrent system is a collection of sequential 
threads/processes that communicate through shared data 
structures called objects.

• An object has a unique name and a set of primitive 
operations.
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A simplified model of a concurrent execution

• A history is a sequence of invocations and replies generated 
on an object by a set of threads

• Invocation:
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A op(args*) xthread id object instance

method name

list of parameters

• Reply:

A ret(res*) x

list of returned values

reply token



A simplified model of a concurrent execution

• A sequential history is a history where all the invocations 
have an immediate response

• A concurrent history is a history that is not sequential
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Sequential

H’: A op() x
A ret() x
B op() x
B ret() x
A op() y
A ret() y

Concurrent

H: A op() x
B op() x
A ret() x
A op() y
B ret() x
A ret() y



Correctness
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 A history is correct if it is                       to a correct 
sequential history

equivalentequivalent

• An                     is correct if it is equivalent to a correct
sequential execution

execution



A simplified model of a concurrent execution

• A process subhistory H|P of a history H is the subsequence 
of all events in H whose process names are P
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H: A op()  x
B op()  x
A ret() x
A op()  y
B ret() x
A ret() y

H|A: A op()  x
A ret() x
A op()  y
A ret() y

• Process subhistories are always sequential

H: A op()  x

A ret() x
A op()  y

A ret() y



Equivalence between histories

• Two histories H and H’ are equivalent if for every process P, 
H|P=H’|P
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H: A op()  x
B op()  x
A ret() x
A op()  y
B ret() x
A ret() y

H|A:
H’|A: A op()  x

A ret() x
A op()  y
A ret() y

H’: B op()  x
B ret() x
A op()  x
A ret() x
A op()  y
A ret() y

H: A op()  x

A ret() x
A op()  y

A ret() y

H’:  

A op()  x
A ret() x
A op()  y
A ret() y

H|B:
H’|B: B op()  x

B ret() x

H:
B op()  x

B ret() x

H’: B op()  x
B ret() x



Correctness conditions

• A                                          is correct if it is equivalent to a 
correct
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sequential execution
concurrent execution

 A history is correct if it is                       to a correct 
sequential history

equivalent
which satisfies a given correctness 

condition

• A correctness condition specifies the set of histories to be 
considered as reference

In order to implement correctly a concurrent object wrt a 
correctness condition, we must guarantee that every 
possible history on our implementation satisfies the 
correctness condition



Sequential Consistency [Lamport 1970]

• A history H is sequentially consistent if

1. it is equivalent to a sequential history S

2. S is legal according to the sequential definition of the 
object

 An object implementation is sequentially consistent if 
every history associated with its usage is sequentially 
consistent
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Sequential Consistency [Lamport 1970]
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Enq(1)

B

A

Enq(2) Deq(2)

A Enq(1)  x

A ret()   x

B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x



Sequential Consistency [Lamport 1970]
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A Enq(1)  x

A ret()   x

B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x

H:

A Enq(1)  x

A ret()   x

H|A: B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x

H|B:

B Enq(2)  x

B ret()   x

A Enq(1)  x

A ret()   x

B Deq(2)  x

B ret()   x

H’:

• H’ is legal and sequential
• H is equivalent to H’
• H is correct w.r.t sequential consistency



Linearizability [Herlihy 1990]

• A concurrent execution is linearizable if:
◦ Each procedure appears to be executed in an indivisible point 

(linearization point) between its invocation and completion

◦ The order among those points is correct according to the 
sequential definition of objects
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Linearizability [Herlihy 1990]
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Enq(1)

B

A

Enq(2) Deq(2)



Linearizability [Herlihy 1990]
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Enq(1)

B

A

Enq(2) Deq(2)



Linearizability [Herlihy 1990]

• A history H is linearizable if:

1. it is equivalent to sequential history S

2. S is correct according to the sequential definition of 
objects

3. If a response precedes an invocation in the original 
history, then it must precede it in the sequential one as 
well

 An object implementation is linearizable if every history 
associated with its usage can be linearized
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Linearizability [Herlihy 1990]

• Linearizability requires:
◦ Sequential Consistency

◦ Real-time order

• Linearizability ⇒ Sequential Consistency

• The composition of linearizable histories is still linearizable

• Linearizability is a local property (closed under composition)

Concurrent and parallel programming
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Quick look on transaction correctness conditions

• We can see a transaction as a set of procedures on different 
object that has to appear as atomic

• Serializability requires that transactions appear to execute 
sequentially, i.e., without interleaving.

◦ A sort of sequential consistency for multi-object atomic 
procedures

• Strict-Serializability requires the transactions’ order in the 
sequential history is compatible with their precedence 
order

◦ A sort of linearizability for multi-object atomic procedures

Concurrent and parallel programming
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Strict Serializability

A bird’s eye view on correctness conditions

Concurrent and parallel programming
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Serializability

Sequential 
Consistency

Linearizability

Opacity

These predicate only on 
committed transactions

It restricts also aborted transactions 
(required for Transactional Memory)



Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a 
sequential order

Respects program order
in each thread

Consistent with 
real-time ordering

Access multiple objects 
atomically

Locality

Concurrent and parallel programming
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Correctness conditions
Progress conditions

Performance



Progress conditions

• Deadlock-freedom:
◦ Some thread acquires a lock eventually

• Starvation-freedom:
◦ Every thread acquires a lock eventually

Concurrent and parallel programming
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Blocking synchronization
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SHARED RESOURCE

The scheduler should guarantee 
that the thread holding the lock 

completes its critical section 



Scheduler’s role

Progress conditions on multiprocessors

• Are not only about guarantees provided by a method 
implementation

• Are also about the scheduling support needed to provide 
progress

Requirement for lock-based applications

• Fair histories

Every thread takes an infinite number of concrete steps

Concurrent and parallel programming
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Progress conditions

• Deadlock-freedom:
◦ Some thread acquires a lock eventually

◦ Some method call completes in every fair execution

• Starvation-freedom:
◦ Every thread acquires a lock eventually

◦ Every method call completes in every fair execution

• Lock-freedom:
◦ Some method call completes in every execution

• Wait-freedom:
◦ Every method call completes in every execution

• Obstruction-freedom:
◦ Every method call, which executes in isolation, completes

Concurrent and parallel programming
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Progress taxonomy

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Deadlock
freedom

Concurrent and parallel programming
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Independent Dependent

Non-blocking Blocking

For everyone -
Thread executes in 

isolation
Fairness

For someone - Fairness

Progress taxonomy

Concurrent and parallel programming
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Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Concurrent and parallel programming
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• The Einsteinium of progress conditions: it does not exist in nature 
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom
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Correctness conditions
Progress conditions

Performance



The cost of synchronization
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The cost of synchronization
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1x

2x

4x

1.5x 1.8x



Amdahl Law – Fixed-size Model (1967)
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Amdahl Law – Fixed-size Model (1967)

• The workload is fixed: it studies how the behavior of the 
same program varies when adding more computing power

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
𝑇𝑠

𝑇𝑝
=

𝑇𝑠

𝛼𝑇𝑠 + (1 − 𝛼)
𝑇𝑠
𝑝

=
1

𝛼 +
(1 − 𝛼)

𝑝

• where:
◦ 𝛼 ∈  [0,1]: Serial fraction of the program

◦ 𝑝 ∈  𝑁: Number of processors

◦ 𝑇𝑠 : Serial execution time

◦ 𝑇𝑝 : Parallel execution time

•  It can be expressed as well vs. the parallel fraction 
𝑃 = 1 − 𝛼

Concurrent and parallel programming
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Amdahl Law – Fixed-size Model (1967)
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How real is this?

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 = lim
𝑝→∞

1

𝛼 +
(1 − 𝛼)

𝑝

=
1

𝛼

• If the sequential fraction is 20%, we have:

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

0.2
=5

• Speedup 5 using infinite processors!
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Fixed-time model
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Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the behavior of 
the scaled program varies when adding more computing 
power

𝑊′ = 𝛼𝑊 + 1 − 𝛼 𝑝𝑊

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 =
𝑊′

𝑊
= 𝛼 + 1 − 𝛼 𝑝

• where:
◦ 𝛼 ∈  [0,1]: Serial fraction of the program
◦ 𝑝 ∈  𝑁: Number of processors
◦ 𝑊 : Original workload
◦ 𝑊′ : Scaled workload

Concurrent and parallel programming
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Speed-up according to Gustafson
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Memory-bounded model

Concurrent and parallel programming
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Sun Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

𝛼𝑊 + 1 − 𝛼 𝐺 𝑝
𝑊
𝑝

=
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• where:
◦ 𝐺(𝑝) describes the workload increase as the memory capacity 

increases

◦ 𝑊∗ = 𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

Concurrent and parallel programming
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Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼

𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general, 𝐺 𝑝 > 𝑝 gives a higher scale-up

Concurrent and parallel programming
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Superlinear speedup

• Can we have a Speed-up > p ?
◦ Workload increases more than computing power (G(p) > p)

◦ Cache effect: larger accumulated cache size. More or even all of 
the working set can fit into caches and the memory access time 
reduces dramatically

◦ RAM effect: enables the dataset to move from disk into RAM 
drastically reducing the time required, e.g., to search it.

Concurrent and parallel programming
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Scalability

• Efficiency

𝐸 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

#𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

• Strong Scalability: If the efficiency is kept fixed while the 
number of processes and maintain fixed the problem size

• Weak Scalability: If the efficiency is kept fixed while 
increasing at the same rate the problem size and the 
number of processes

Concurrent and parallel programming
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Recommended readings
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• Linearizability: A correctness condition for concurrent 
objects 
M. Herlihy et al. , ACM TOPLAS, 1990

• On the nature of progress
M. Herlihy et al., OPODIS’11.

• Another View on Parallel Speedup
Sun et all., Supercomputing ‘90
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