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• Flash memory was invented by Dr. Fujio Masuoka in 1984

• The name “Flash” was adopted because the process of erasing
the memory contents reminded him of the flash of a camera

• A Flash memory cell is a Floating Gate
Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET)
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What is a flash memory cell?
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• The N+ region is a silicon lattice with phosphorous impurities,
creating an excess of electrons

• The P- region is a silicon lattice with boron impurities,
creating an absence of electrons

• The floating gate is surrounded by insulating layers

P-well
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CONTROL GATE
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What is a flash memory cell?
Anatomy
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• The Source (S) and Drain (D) are
disconnected, thus a current
cannot flow between them

• Applying a voltage between
Control Gate (CG) and Body (B)
creates a concentration of electrons
between S and D

• If the voltage if high enough (V1),
it creates a channel between S and
D which allows the current ID to
flow between them.

P-well

N+ N+

SOURCE DRAIN

CG

FG

How does a flash memory cell work?
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• Applying an appropriate voltage
(VPROGRAM) to CG, the electrons
will be trapped in FG

• those electrons are kept in FG,
although there is no tension on CG

• we call this state “0”

• In state 0, a voltage V0 > V1 is
required in order to establish the
N-channel
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How does a flash memory cell work?
Program operation
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• In state 0, electrons are stored in
FG

• a voltage (VPROGRAM) is required
in order to remove them from FG

• at this point no charges are on FG

• we call this state “1”

P-well
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CG

FG
_ _ _ _ _ _ _ _

How does a flash memory cell work?
Erase operation
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• The two states allows a cell to store a bit
STATE 1:

• No charges in FG

• required a VCG > V1 in order to
set-up the N-Channel ⇒ ID > 0 P-well
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STATE 0:

• Charges are in FG

• required a VCG > V0 > V1 in order
to set-up the N-Channel ⇒ ID > 0 P-well
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Since the cell stores ONE bit, it is called Single-Level Cell

How does a flash memory cell work?
States of a Single-Level Cell
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• Erase the cell

• To write 1: it is done

• To write 0: program the cell

P-well
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How does a flash memory cell work?
How to write a cell?
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• Erase the cell

• To write 1: it is done

• To write 0: program the cell
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• Reading a cell consists in
inferring on the cell state

• Apply an intermediate
voltage V1 < VI < V0 on
CG

• Read the actual value I ∗D of
the current ID

• If I ∗D = 0 the bit value is 0

• If I ∗D 6= 0 the bit value is 1

P-well

N+ N+

SOURCE DRAIN

CG

FG STATE=?

V1 V00

ID

VCG

STATE 1 STATE 0

How does a flash memory cell work?
How to read a cell?
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• If we partially charge FG, we need a lower threshold voltage
for creating a channel

• We store 2 bits by using 1 programmed state, 2 partially
programmed states and 1 erased state

• A flash cell storing multiple bits is a Multi-Level Cell (MLC)

• A Triple-Level Cell (TLC) stores 3 bits

_ _ _ _ _ _ _ __ _

ERASED PARTIALLY PROGRAMMED PROGRAMMED

_ _ _ _

Multi-Level Cell
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• writing a flash cell involves an erase and a program

⇒ electrons move from/into FG

• electrons collide with and damage the insulating layer creating traps

⇒ a Stress Induced Leakage Current (SILC) can flow through these
traps

• a lot of traps can build a path from the body to FG

⇒ electrons can flow through that path ⇒impossibility to program

⇒ the flash cell is unusable

anode interface

cathode interface

(SiO2)

electron
traps

< 10 nm

Why does a flash cell deteriorate in time?
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• A flash cell can be programmed and erased a limited number of
times before a breakdown ⇒ This number is called P/E-Cycles
• Vendors design firmware capable of recompute the voltage
thresholds for read/write operations ⇒ enterprise-MLC (eMLC)

100000

30000

10000
5000

P/E Cycles

SLC eMLC MLC TLC

Why does a flash cell deteriorate in time?
PE-Cycles
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SLC:

• lower density

• higher cost

• faster write

• faster read

• higher endurance

MLC:

• higher density

• lower cost

• erase time is similar to SLC

• the level of charges in FG has to be
set carefully ⇒ slower program ⇒
slower write

• state is not 0/1 ⇒ slower read

• eMLC has 3x shorter endurance

• MLC has 10x shorter endurance

• TLC has 20x shorter endurance

MLC vs SLC
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How are flash chips organized?
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Additional bits are 
used to store ECC
and recover from 
runtime read errors
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• Flash cells are connected forming an array called string

• According to the strategies used to connect multiple cells, we
can distinguish at least two kind of configuration:

NOR
Flash cells are connected in

parallel, resembling a NOR gate

A B

Vcc

Vout

NAND
Flash cells are connected in

series, resembling a NAND gate

A

B

Vcc

Vout

How are flash cells organized?
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• Let F be the CG side length

NOR:

• occupies area 10F 2

• read/write a single cell

NAND:

• occupies area 4F 2

• read/write a single page

• erase a single block

Bit 1 Bit 2

Select Gate 2

Select Gate 1

NOR ARCHITECTURE NAND ARCHITECTURE

Page 1

Page 2

Page 3

Bit 1 Bit 2 Bit 3

Source
For One
Block

Page 2

Page 3

Bit 3

Page 1

Page 8

Bit 1 Bit 2

Select Gate 2

Select Gate 1

NOR ARCHITECTURE NAND ARCHITECTURE

Page 1

Page 2

Page 3

Bit 1 Bit 2 Bit 3

Source
For One
Block

Page 2

Page 3

Bit 3

Page 1

Page 8

How are flash cells organized?
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NOR:

• fast random-byte read

• slower page read

• slower write

• lower density

⇒ good for source code

NAND:

• no random-byte read

• slow partial page read when
supported

• faster page read

• faster page write

• higher density

⇒ good for storage

We focus on NAND flash technology

NOR vs NAND
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• Write-in-place strategy:

1. read the block
2. erase the block
3. program the block with the updated page

• 1 page write = N page read + 1 block erase + N page write
(N = number of pages in a block)

⇒ very slow write

⇒ If we update the page 40 times per second (every 25ms), the
block is completely broken in:

◦ SLC = PECycles
UpdateRate = 105

40ps ≈ 2500s ≈ 40m

◦ MLC = 104

40ps ≈ 4m

◦ TLC = 5·103
40ps ≈ 2m

ALERT!

In our example the write rate is 80KBps

How is a page written?
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• Write amplification occurs when 1 user page write leads to
multiple flash writes

• Write amplification make flash blocks deteriorate faster

• Let F be the number of flash writes corresponding to U user
writes

⇒ The write amplification A is:

A =
F + U

U
= 1 +

F

U
= 1 + Af

where Af is the write amplification factor

Write Amplification
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• Write-in-place is inadequate in terms of reliability and
performance (Af ≈ # number of pages in a block)

• Updated pages are re-written on new locations

• The logical address of the update page is mapped to a
different physical page

• Previous pages are invalidated

⇒ 1 user page write = 1 page read (obtain an empty page) +
2 page write (update data + invalidate page) ⇒ faster write

Operating System's
view of SSD

SSD

1 2 3 4 5 6 7 980

1 2 3 4 5 6 7 980

Page Id

Physical Page Id

How is a page written? Relocation-on-write
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2 page write (update data + invalidate page) ⇒ faster write

Operating System's
view of SSD

SSD
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How is a page written? Relocation-on-write
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• Assign Logical Addresses to pages

• Store the association between physical and logical addresses in
a Translation Mapping Table

• Store the number of erase operation performed on physical
pages in a Erase Count Table

• Tables are:

◦ maintained in SRAM (high efficient) at runtime
◦ stored on flash during shutdown to ensure durability
◦ loaded at boot-up

Flash Translation Layer
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• Free pages for relocation can be retrieved from the whole SSD

• Wear-leveling guarantees that the number of PE-Cycles is
uniformly distributed among all blocks

⇒ Wear-leveling extends the time to live of each block and the
whole SSD

• Thanks to wear-leveling all blocks break at the same time
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Wear-Leveling
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• In order to guarantee that enough free pages are available for
write relocation, wear-leveling needs:

◦ Over-provisioning - keep free a percentage of raw capacity
◦ Garbage collection - keep invalid pages in the same block
◦ DRAM buffers - keep valid pages in a buffer in order to write

full blocks and reduce fragmentation

• We can distinguish at least two kind of wear-leveling
algorithms:

◦ Dynamic wear-leveling
◦ Static wear-leveling

Wear-Leveling
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• It is called dynamic, because it is executed every time the OS
replace a block of data

• A small percentage (e.g. 2%) of raw capacity is reserved as
free-block pool

• It chooses from the free pool the block with minimum erase
count the buffer is flushed

• The replaced block is erased and added to the free pool

⇒ Only frequently-updated blocks are consumed

Wear-Leveling
Dynamic Algorithm

25 of 47 - An overview on solid-state-drives architectures and enterprise solutions



• Periodically scan the metadata of each block

• Individuate inactive data blocks with lower erase count than
free blocks

• Copy their content into free-blocks and exchange them

⇒ this guarantees that static blocks participate to wear leveling

Wear-Leveling
Static Algorithm
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At first approximation, wear-leveling eliminate write amplification
generated by different sizes of erase and write units

⇒ The block time to fault is:

BlockTTF ≈
Ndie · Nplanes · Nblocks · N · PECycles

PageWriteRate

BlockTTF ≈
Ndie · Nplanes · Nblocks · N · PageSize · PECycles

PageWriteRate · PageSize

BlockTTF ≈
CapacitySSD · PECycles

WriteRate

• Blocks deteriorate uniformly, thus:

BlockTTF ≈ SSDTTF

Wear-Leveling
Impact on reliability
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• Take a SSD with capacity C and a write rate W

• According to the flash cells used, we have different time to fault:

• C = 4GB,W = 80KBps

◦ SLC ⇒ SSDTTF = C ·PECyclesSLC
W = 4GB·105

80KBps ≈ 158years

◦ MLC ⇒ SSDTTF = C ·PECyclesMLC

W ≈ 15.8years

◦ TLC ⇒ SSDTTF = C ·PECyclesTLC
W ≈ 7.9years

• C = 128GB,W = 4MBps

◦ SLC ⇒ SSDTTF = C ·PECyclesSLC
W = 128GB·105

4MBps ≈ 101years

◦ MLC ⇒ SSDTTF = C ·PECyclesMLC

W ≈ 10years

◦ TLC ⇒ SSDTTF = C ·PECyclesTLC
W ≈ 5years

Wear-Leveling
Example
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As said before wear leveling make flash blocks deteriorate
uniformly. Anyhow

• Garbage collection increase the number of flash write

• Static Wear-leveling increases the number of flash write

⇒ re-introduce write amplification factor

SSDTTF ≈
CapacitySSD · PECycles

(1 + Af )WriteRate

Wear-Leveling
Impact on Reliability 2
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• Reducing the amount of user data effectively stored in flash
chips allows to reduce the write rate and increase the life of
flash drives

• Data reduction techniques are:

◦ Compression
◦ Deduplication

Data Reduction
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• It consists in reducing the number of bits needed to store data.

• Lossless compression allows to restore data to its original state

• Lossy compression permanently eliminates bits of data that
are redundant, unimportant or imperceptible

• CompressionRatio = UncompressedSize
CompressedSize

⇒ Data reduction is DRc = 1
CompressionRatio

SSDTTF ≈
CapacitySSD · PECycles

WriteRate · (1 + Af ) · DRc

Data Reduction
Data Compression
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• It looks for redundancy of sequences of bytes across very large
comparison windows.

• Sequences of data are compared to the history of other such
sequences.

• The first uniquely stored version of a sequence is referenced
rather than stored again

• Let DD the average percentage of deduplicable data

SSDTTF ≈
CapacitySSD · PECycles

WriteRate · (1 + Af ) · DRc · (1− DD)

Data Reduction
Data Deduplication
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• RAID uses redundancy (e.g. a parity code) to increase
reliability

• Any RAID solution increase the amount of data physically
written on disks (RAID Overhead)

⇒ when adopting a RAID solution with flash technology we are
reducing the lifetime of the whole storage system by a factor
at most equal to the RAID overhead

RAID Solutions on flash technology
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• N flash disks of capacity C and cells supporting L P/E-cycles.
• Write load rate equal to W.

RAID0:

• stripes data

• no fault tolerance

RAID10:

• stripes data

• replicates each disk

• W is uniformly distributed on disks (thanks to striping)

⇒ TTLRAID0 = N·C ·L
W ⇒ TTLRAID10 = N·C ·L

2W

Alert!

In order to increase reliability we half the time to live of flash cells

RAID Solutions on flash technology
Example
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Modeling SSD endurance in a complex system
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• We have learned that any redundancy reduces the maximum
time to live of all SSDs

• The answer is YES, but why?

Does it still make sense to use RAID?
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• The system building block is called XBrick:

◦ 25 800GB eMLC SSDs
◦ Two 1U Storage Controllers (redundant storage processors)

• The scale up is guaranteed by adding more XBricks (up to six
in a rack) that will be connected through InfiniBand ports.

• The system performs inline data reduction by:

◦ deduplication
◦ compression

EMC XtremIO
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• The system checks for deduplicated data:

1. subdivide the write stream in 4KB blocks
2. for each block in the stream

2.1 compute a digest
2.2 check in a shared mapping table the presence of the block
2.3 if present update a reference counter
2.4 else use the digest to determine the location of the block and

send the block to the respective controller node

• The addressing of blocks should uniformly distribute the data
on all nodes

EMC XtremIO
Deduplication
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• The XtremIO system implements a proprietary data protection
algorithm called XtremIO Data Protection (XDP)

• Disks in a node are arranged in 23+2 columns

• 1 row parity and 1 diagonal party

• Each stripe is subdivided in 28 rows and 29 diagonals

EMC XtremIO
XtremIO Data Protection
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• In order to compute efficiently the diagonal parity and to
spread writes on all disks, XDP waits to fill in memory the
emptiest stripe

• When the stripe is full, commit it on disks

• The emptiest stripe selection implies that free space is linearly
distributed on stripes

• XDP can:

◦ overcome 2 concurrent failures (2 parities)
◦ have a write overhead smaller than other RAID solutions

EMC XtremIO
XtremIO Data Protection
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Suppose a system that is 80% full:

• The emptiest stripe is 40% full (due to the emptiest selection)

• A stripe can handle 28 · 23 = 644 writes

• The emptiest stripe can handle 644 · 40% ≈ 257

#parities = 28(rows) + 29(diagonal) = 57

RAIDoverhead =
#writes

#userwrites

RAIDoverhead =
257 + 57

257
1.22

EMC XtremIO
XtremIO Data Protection
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• The system building block is made of:

◦ One Storage Enclosure of 12 4TB eMLC SSDs
◦ Two Control Enclosures (redundant storage processors) with

8-core Intel Xeon and 32GB of RAM

• The system performs inline data reduction by:

◦ compression with two dedicated hardware accelerators

IBM FlashDrive V840
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• FlashDrive V840 offers two levels of RAID protection:

◦ RAID5 in configuration 10 +1 Parity +1 Spare among disks
◦ RAID5 in configuration 9+1 among chips in a disk
◦ RAID overhead = 4

IBM FlashDrive V840
2D RAID
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• One storage enclosure equipped with:

◦ 2 controller nodes with 2 Intel eight-core processors and 32GB
of RAM

◦ 24 SSD drives
◦ according to the type of flash cells, drives capacity is:

1920GB (MLC), 400GB (eMLC), 200GB (SLC);

• The system performs inline data reduction by:

◦ deduplication which uses a hashing engine capability built into
ASICs

HP 3PAR STORE 7450
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More detailed info can be found in the main references:

• http://www.csee.umbc.edu/~squire/images/ssd1.pdf

• XtremIO, FlashDrive v840, HP 3PAR white papers

If you want to play, there is an interesting tool by Intel:

• http://estimator.intel.com/ssdendurance

Additional Material
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Quick look to the (not-far) future
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Questions?

marotta@diag.uniroma1.it

www.dis.uniroma1.it/~marotta

Thanks for your attention

50 of 47 - An overview on solid-state-drives architectures and enterprise solutions

www.dis.uniroma1.it/~marotta

