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Introduction



Trend in processor technology
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The free 
lunch is over

Multicore 
scaling is over



Trend in processor technology
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• Multicore is a standard and established technology

• Applications should be AT LEAST scalable on 
homogenous cores

• Necessarily when remote computing power is not 
available

• Ideally able to exploit different “kinds” of computing units

• Concurrent and parallel programming is a 
requirement to exploit current and future hardware



Parallel programming

Ad-hoc concurrent programming languages

• Development tools
• Compilers 

• MPI, OpenMP, libraries

• Tools to debug parallel code (gdb, valgrind)

• Writing parallel code is an art
• There are approaches, not prepackaged solutions

• Every machine has its own singularities

• Every problem to face has different requisites

• The most efficient parallel algorithm might not be the 
most intuitive one
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A classical example
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PRODUCER

1. while(1) {

2.  

3.  

4.   <Write on b>

5.  

6.  

7. }

CONSUMER

1. while(1) {

2.  

3.  

4.   <Read from b>

5.  

6.  

7. }

INIT

1. Buffer b;
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1. while(1) {

2.  
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INIT

1. Buffer b;

2. Semaphore p = 0;

wait(p); wait(p);

signal(p); signal(p);



A classical example

Concurrent and parallel programming 7

PRODUCER

1. while(1) {

2.  

3.  

4.   <Write on b>

5.  

6.  

7. }

CONSUMER

1. while(1) {

2.  

3.  

4.   <Read from b>

5.  

6.  

7. }

INIT

1. Buffer b;

2. Semaphore p = 0;

3. Semaphore c = 0;
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signal(c); signal(p);
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PRODUCER

1. while(1) {

2.  

3.  

4.   <Write on b>

5.  

6.  

7. }

CONSUMER

1. while(1) {

2.  

3.  

4.   <Read from b>

5.  

6.  

7. }

INIT

1. Buffer b;

2. Semaphore p = 1;

3. Semaphore c = 0;

wait(p); wait(c);

signal(c); signal(p);



Another example
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• Challenge
• Count primes between 1 and 108

• Given 
• N threads

• 1 thread for each logical cpu

• Goals
• Run N times faster



Liveness
might be impaired due to the arbitration of accesses

On concurrent programming 
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…zZz…

SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because 

of waste of clock cycles



What do we want from parallel programs?

• Safety: nothing wrong happens 
(Correctness)

• parallel versions of our programs should be 
correct as their sequential implementations

• Liveliness: something good happens 
eventually (Progress)

• if a sequential program terminates with a given 
input, we want that its parallel alternative also 
completes with the same input

• Performance
• we want to exploit our parallel hardware
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A bit of terminology

• Hardware
• Processor 

• CPU 

• CPU-Core

• Logical Core

• Hardware thread

• Software
• Process

• Thread

• Fiber

• Task
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• Programs
• Sequential

• Concurrent

• Parallel

• Distrubuted

• Memory
• Shared

• Distributed



The system model

• Threads (aka processes)

• Cores (aka cpus)

• Shared memory

• Arbitrary long asynchronous delays

• Scheduler
• A system component that decides 

which/when a thread runs on a given core
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