
Programmazione concorrente
Laurea Magistrale in Ingegneria Informatica

Università Tor Vergata

Docente: Romolo Marotta

Introduction

Trend in processor technology

Concurrent and parallel programming 2

The free
lunch is over

Multicore
scaling is over

Trend in processor technology

Concurrent and parallel programming 3

• Multicore is a standard and established technology

• Applications should be AT LEAST scalable on
homogenous cores

• Necessarily when remote computing power is not
available

• Ideally able to exploit different “kinds” of computing units

• Concurrent and parallel programming is a
requirement to exploit current and future hardware

Parallel programming

Ad-hoc concurrent programming languages

• Development tools
• Compilers

• MPI, OpenMP, libraries

• Tools to debug parallel code (gdb, valgrind)

• Writing parallel code is an art
• There are approaches, not prepackaged solutions

• Every machine has its own singularities

• Every problem to face has different requisites

• The most efficient parallel algorithm might not be the
most intuitive one

Concurrent and parallel programming 4

A classical example

Concurrent and parallel programming 5

PRODUCER

1. while(1) {

2.

3.

4. <Write on b>

5.

6.

7. }

CONSUMER

1. while(1) {

2.

3.

4. <Read from b>

5.

6.

7. }

INIT

1. Buffer b;

A classical example

Concurrent and parallel programming 6

PRODUCER

1. while(1) {

2.

3.

4. <Write on b>

5.

6.

7. }

CONSUMER

1. while(1) {

2.

3.

4. <Read from b>

5.

6.

7. }

INIT

1. Buffer b;

2. Semaphore p = 0;

wait(p); wait(p);

signal(p); signal(p);

A classical example

Concurrent and parallel programming 7

PRODUCER

1. while(1) {

2.

3.

4. <Write on b>

5.

6.

7. }

CONSUMER

1. while(1) {

2.

3.

4. <Read from b>

5.

6.

7. }

INIT

1. Buffer b;

2. Semaphore p = 0;

3. Semaphore c = 0;

wait(p); wait(c);

signal(c); signal(p);

A classical example

Concurrent and parallel programming 8

PRODUCER

1. while(1) {

2.

3.

4. <Write on b>

5.

6.

7. }

CONSUMER

1. while(1) {

2.

3.

4. <Read from b>

5.

6.

7. }

INIT

1. Buffer b;

2. Semaphore p = 1;

3. Semaphore c = 0;

wait(p); wait(c);

signal(c); signal(p);

Another example

Concurrent and parallel programming 9

• Challenge
• Count primes between 1 and 108

• Given
• N threads

• 1 thread for each logical cpu

• Goals
• Run N times faster

Liveness
might be impaired due to the arbitration of accesses

On concurrent programming

Concurrent and parallel programming 10

…zZz…

SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because

of waste of clock cycles

What do we want from parallel programs?

• Safety: nothing wrong happens
(Correctness)

• parallel versions of our programs should be
correct as their sequential implementations

• Liveliness: something good happens
eventually (Progress)

• if a sequential program terminates with a given
input, we want that its parallel alternative also
completes with the same input

• Performance
• we want to exploit our parallel hardware

Concurrent and parallel programming 11

A bit of terminology

• Hardware
• Processor

• CPU

• CPU-Core

• Logical Core

• Hardware thread

• Software
• Process

• Thread

• Fiber

• Task

Concurrent and parallel programming 12

• Programs
• Sequential

• Concurrent

• Parallel

• Distrubuted

• Memory
• Shared

• Distributed

The system model

• Threads (aka processes)

• Cores (aka cpus)

• Shared memory

• Arbitrary long asynchronous delays

• Scheduler
• A system component that decides

which/when a thread runs on a given core

Concurrent and parallel programming 13

	Slide 1: Introduction
	Slide 2: Trend in processor technology
	Slide 3: Trend in processor technology
	Slide 4: Parallel programming
	Slide 5: A classical example
	Slide 6: A classical example
	Slide 7: A classical example
	Slide 8: A classical example
	Slide 9: Another example
	Slide 10: On concurrent programming
	Slide 11: What do we want from parallel programs?
	Slide 12: A bit of terminology
	Slide 13: The system model

