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Properties of Concurrent Programs

1. Scalability

2. Correctness

3. Progress



Liveness
might be impaired due to the arbitration of accesses

On concurrent programming 
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SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because 

of waste of clock cycles

Properties



What do we want from parallel programs?

• Safety: nothing wrong happens 
(Correctness)

• parallel versions of our programs should be 
correct as their sequential implementations

• Liveliness: something good happens 
eventually (Progress)

• if a sequential program terminates with a given 
input, we want that its parallel alternative also 
completes with the same input

• Performance
• we want to exploit our parallel hardware
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A bit of terminology

• Hardware
• Processor 

• CPU 

• CPU-Core

• Logical Core

• Hardware thread

• Software
• Process

• Thread

• Fiber

• Task
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• Programs
• Sequential

• Concurrent

• Parallel

• Distrubuted

• Memory
• Shared

• Distributed
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The system model

• Threads (aka processes)

• Cores (aka cpus)

• Shared memory

• Arbitrary long asynchronous delays

• Scheduler
• A system component that decides 

which/when a thread runs on a given core
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Scalability
Correctness conditions

Progress conditions



The cost of synchronization
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SHARED RESOURCE
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The cost of synchronization
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1x

2x

4x

1.5x 1.8x
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Amdahl Law – Fixed-size Model (1967)
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Amdahl Law – Fixed-size Model (1967)

• The workload is fixed: it studies how the behavior 
of the same program varies when adding more 
computing power

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
𝑇𝑠

𝑇𝑝
=

𝑇𝑠

𝛼𝑇𝑠 + (1 − 𝛼)
𝑇𝑠
𝑝

=
1

𝛼 +
(1 − 𝛼)

𝑝
• where:

• 𝛼 ∈  [0,1]: Serial fraction of the program
• 𝑝 ∈  𝑁: Number of processors
• 𝑇𝑠 : Serial execution time

• 𝑇𝑝 : Parallel execution time

•  It can be expressed as well vs. the parallel fraction 
𝑃 = 1 − 𝛼
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Amdahl Law – Fixed-size Model (1967)
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How real is this?

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 = lim
𝑝→∞

1

𝛼 +
(1 − 𝛼)

𝑝

=
1

𝛼

• If the sequential fraction is 20%, we have:

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

0.2
=5

• Speedup 5 using infinite processors!
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Fixed-time model
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Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the 
behavior of the scaled program varies when adding 
more computing power

𝑊′ = 𝛼𝑊 + 1 − 𝛼 𝑝𝑊

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 =
𝑊′

𝑊
= 𝛼 + 1 − 𝛼 𝑝

• where:
• 𝛼 ∈  [0,1]: Serial fraction of the program
• 𝑝 ∈  𝑁: Number of processors
• 𝑊 : Original workload
• 𝑊′ : Scaled workload
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Speed-up according to Gustafson
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Memory-bounded model
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Sun Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

𝛼𝑊 + 1 − 𝛼 𝐺 𝑝
𝑊
𝑝

=
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• where:
• 𝐺(𝑝) describes the workload increase as the memory 

capacity increases

• 𝑊∗ = 𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊
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Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼

𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general, 𝐺 𝑝 > 𝑝 gives a higher scale-up
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Superlinear speedup

• Can we have a Speed-up > p ?
• Workload increases more than computing power (G(p) > 

p)

• Cache effect: larger accumulated cache size. More or 
even all of the working set can fit into caches and the 
memory access time reduces dramatically

• RAM effect: enables the dataset to move from disk into 
RAM drastically reducing the time required, e.g., to 
search it.
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Yes!
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Scalability

• Efficiency

𝐸 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

#𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

• Strong Scalability: If the efficiency is kept fixed 
while increasing the number of processes and 
maintain fixed the problem size

• Weak Scalability: If the efficiency is kept fixed 
while increasing at the same rate the problem size 
and the number of processes
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Scalability
Correctness conditions

Progress conditions



Correctness in a sequential world

• What does it mean for a program to be correct?

• Simplification: We mask any program/algorithm 
behind the concept of ABSTRACT DATA TYPE

• An Abstract Data Type (ADT) defines:
• A state

• The domain of its values

• Operations/methods

• Constraints to apply operations/methods

• An ADT specification do not care about 
implementations

• Typically, operations and their constraints are 
defined via pre-conditions and post-conditions

Properties – Correctness 22



Example: FIFO Queue ADT

• init():
• pre: state = NULL

• post: state = [] 

• enqueue(x):
• pre: state != NULL

• post: state = state,x

• dequeue()(x):
• pre: state = x,seq

• post: state = seq

• dequeue()(NULL):
• pre: state = []

• post: -

Properties – Correctness 23



Correctness in a sequential world
• When considering only sequential:

• Methods do not overlap each other
• The effect/result of a method can be checked by inspecting 

the state before/after their ending

• We totally ignore the fact that methods take time!

• We totally ignore the state during method invocations!

• Proving that a sequential implementation is correct:
• Ensure that for all possible (sequential) executions both pre 

and post conditions always hold

• Focus on the correctness of an individual execution

Properties – Correctness 24

A
Enq(2)Deq()(NULL) Deq()(2)



Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 25

B

A

Enq(2)

Deq() return NULL



Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 26

B

A

Enq(2)

Deq() ret 2
Enq(1)



Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Methods are partially ordered intervals

• Methods could never be executed in isolation!

• We should describe any possible interleaving!

• What does it mean for a concurrent program to be 
correct?

• What’s exactly a concurrent FIFO queue?

• FIFO implies a strict temporal ordering

• Concurrency implies an ambiguous temporal ordering

Properties – Correctness 27



Classical approach to concurrent programming

Based on blocking primitives
• Semaphores

• Locks acquiring

• Simple??

Properties – Correctness 28

PRODUCER

1. Semaphore p, c = 0;

2. Buffer b;

3.  

4. while(1) {

5. wait(c);

6. <Write on b>

7. signal(p);

8. }

CONSUMER

1. Semaphore p, c = 0;

2. Buffer b;

3.  

4. while(1) {

5. wait(p);

6. <Read from b>

7. signal(c);

8. }



Correctness in a concurrent world?
• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 29

B

A

Enq(2)

Deq() return NULL

M.E.

M.E.

Yes!

Deq() ret NULL Enq(2)



Correctness in a concurrent world?
• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 30

B

A

Enq(2)

Deq() ret 2Enq(1)

M.E.

M.E.

Yes!

M.E.

Enq(1)Enq(2) Deq()  ret 2



Correctness

• Intuitively, if we rely on locks, changes happen in a 
non-interleaved fashion, resembling a sequential 
execution

• We can say a concurrent execution is correct only 
because we can associate it with a sequential one, 
which we know the functioning of

• An execution is correct if it is equivalent to a correct 
sequential execution

Properties – Correctness 31



Correctness

• An                     is correct if it is equivalent to a 
correct

Properties – Correctness 32

sequential execution
execution

sequential execution
execution



A simplified model of a concurrent system

• A concurrent system is a collection of sequential 
threads/processes that communicate through 
shared data structures called objects.

• An object has a unique name and a set of primitive 
operations.
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A simplified model of a concurrent execution

• A history is a sequence of invocations and replies 
generated on an object by a set of threads

• Invocation:

Properties – Correctness 34

A op(args*) xthread id object instance

method name

list of parameters

• Reply:

A ret(res*) x

list of returned values

reply token



A simplified model of a concurrent execution

• A sequential history is a history where all the 
invocations have an immediate response

• A concurrent history is a history that is not 
sequential

Properties – Correctness 35

Sequential

H’: A op() x
 A ret() x
 B op() x
 B ret() x
 A op() y
 A ret() y

Concurrent

H: A op() x
 B op() x
 A ret() x
 A op() y
 B ret() x
 A ret() y



Correctness

• An                     is correct if it is equivalent to a 
correct

Properties – Correctness 36

 A history is correct if it is                       to a correct 
sequential history

equivalentequivalent

sequential execution
execution



A simplified model of a concurrent execution

• A process subhistory H|P of a history H is the 
subsequence of all events in H whose process 
names are P

Properties – Correctness 37

H: A op()  x
 B op()  x
 A ret() x
 A op()  y
 B ret() x
 A ret() y

H|A: A op()  x
     A ret() x
     A op()  y
     A ret() y

• Process subhistories are always sequential

H: A op()  x
  
 A ret() x
 A op()  y
  
 A ret() y



Equivalence between histories

• Two histories H and H’ are equivalent if for every 
process P, H|P=H’|P

Properties – Correctness 39

H: A op()  x
 B op()  x
 A ret() x
 A op()  y
 B ret() x
 A ret() y

H|A:
H’|A: A op()  x
      A ret() x
      A op()  y
      A ret() y

H’: B op()  x
    B ret() x
    A op()  x
    A ret() x
    A op()  y
    A ret() y

H: A op()  x
  
 A ret() x
 A op()  y
  
 A ret() y

H’:  
     
    A op()  x
    A ret() x
    A op()  y
    A ret() y

H|B:
H’|B: B op()  x
      B ret() x

H:  
 B op()  x
  
  
 B ret() x
  

H’: B op()  x
    B ret() x
     
     
     
     



Correctness conditions

• A                                          is correct if it is 
equivalent to a correct

Properties – Correctness 40

sequential execution
concurrent execution

 A history is correct if it is                       to a correct 
sequential history

equivalent
which satisfies a given correctness 

condition

• A correctness condition specifies the set of histories to be 
considered as reference

In order to implement correctly a concurrent object wrt a 
correctness condition, we must guarantee that every 
possible history on our implementation satisfies the 
correctness condition



Sequential Consistency [Lamport 1970]

• A history H is sequentially consistent if

1. it is equivalent to a sequential history S

2. S is legal according to the sequential definition of 
the object

 An object implementation is sequentially 
consistent if every history associated with its usage 
is sequentially consistent

Properties – Correctness 41



Sequential Consistency [Lamport 1970]
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Enq(1)

B

A

Enq(2) Deq(2)

A Enq(1)  x

A ret()   x

B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x



Sequential Consistency [Lamport 1970]
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A Enq(1)  x

A ret()   x

B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x

H:

A Enq(1)  x

A ret()   x

H|A: B Enq(2)  x

B ret()   x

B Deq(2)  x

B ret()   x

H|B:

B Enq(2)  x

B ret()   x

A Enq(1)  x

A ret()   x

B Deq(2)  x

B ret()   x

H’:

• H’ is legal and sequential
• H is equivalent to H’
• H is correct w.r.t sequential consistency



Linearizability [Herlihy 1990]

• A concurrent execution is linearizable if:
• Each procedure appears to be executed in an indivisible 

point (linearization point) between its invocation and 
completion

• The order among those points is correct according to the 
sequential definition of objects
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Linearizability [Herlihy 1990]

Properties – Correctness 45

Enq(1)

B

A

Enq(2) Deq(2)



Linearizability [Herlihy 1990]
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Enq(1)

B

A

Enq(2) Deq(2)



Linearizability [Herlihy 1990]

• A history H is linearizable if:

1. it is equivalent to sequential history S

2. S is correct according to the sequential definition 
of objects

3. If a response precedes an invocation in the 
original history, then it must precede it in the 
sequential one as well

 An object implementation is linearizable if every 
history associated with its usage can be linearized

Properties – Correctness 48



Linearizability [Herlihy 1990]

• Linearizability requires:
• Sequential Consistency

• Real-time order

• Linearizability ⇒ Sequential Consistency

• The composition of linearizable histories is still 
linearizable

• Linearizability is a local property (closed under 
composition)

Properties – Correctness 49



Quick look on transaction correctness conditions

• We can see a transaction as a set of procedures on 
different object that has to appear as atomic

• Serializability requires that transactions appear to 
execute sequentially, i.e., without interleaving.

• A sort of sequential consistency for multi-object atomic 
procedures

• Strict-Serializability requires the transactions’ order 
in the sequential history is compatible with their 
precedence order

• A sort of linearizability for multi-object atomic procedures

Properties – Correctness 50



Strict Serializability

A bird’s eye view on correctness conditions

Properties – Correctness 51

Serializability

Sequential 
Consistency

Linearizability



Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a 
sequential order

Respects program order
in each thread

Consistent with 
real-time ordering

Access multiple objects 
atomically

Locality
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Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a 
sequential order

Respects program order
in each thread

Consistent with 
real-time ordering

Access multiple objects 
atomically

Locality

Properties – Correctness 54



Scalability
Correctness conditions

Progress conditions



Progress conditions

• Deadlock-freedom:
• Some thread acquires a lock eventually

• Starvation-freedom:
• Every thread acquires a lock eventually

Properties – Progress 56



Blocking synchronization

Properties – Progress 57
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SHARED RESOURCE

The scheduler should guarantee 
that the thread holding the lock 

completes its critical section 



Scheduler’s role

Progress conditions on multiprocessors

• Are not only about guarantees provided by a 
method implementation

• Are also about the scheduling support needed to 
provide progress

Requirement for lock-based applications

• Fair histories

Every thread takes an infinite number of concrete 
steps

Properties – Progress 58



Progress conditions

• Deadlock-freedom:
• Some thread acquires a lock eventually
• Some method call completes in every fair execution

• Starvation-freedom:
• Every thread acquires a lock eventually
• Every method call completes in every fair execution

• Lock-freedom:
• Some method call completes in every execution

• Wait-freedom:
• Every method call completes in every execution

• Obstruction-freedom:
• Every method call, which executes in isolation, 

completes

Properties – Progress 59



Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy
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Independent Dependent

Non-blocking Blocking

For everyone -
Thread executes in 

isolation
Fairness

For someone - Fairness

Progress taxonomy
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Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Properties – Progress 62

• The Einsteinium of progress conditions: it does not exist in nature 
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom

Maximal

Minimal



Progress conditions [informal]

• Minimal progress:
• Some method call completes

• Maximal progress
• Every method call completes

• Dependent
• Restrict the execution in which it provides progress

• Independent
• Provides progress in every execution
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Progress conditions [informal]

• Deadlock-freedom:
• Some method call completes in every fair execution
• Minimal progress in every fair execution

• Starvation-freedom:
• Every method call completes in every fair execution
• Maximal progress in every fair execution

• Lock-freedom:
• Minimal progress in every execution

• Wait-freedom:
• Maximal progress in every execution

• Obstruction-freedom:
• Maximal progress in every execution where threads 

taking an infinite number of steps run k>0 steps in 
isolation

Properties – Progress 64
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