
Programmazione concorrente
Laurea Magistrale in Ingegneria Informatica

Università Tor Vergata

Docente: Romolo Marotta

Properties of Concurrent Programs

1. Scalability

2. Correctness

3. Progress

Liveness
might be impaired due to the arbitration of accesses

On concurrent programming

2

…zZz…

SHARED RESOURCE

Correctness
guaranteed by mutual exclusion

Performance
might be hampered because

of waste of clock cycles

Properties

What do we want from parallel programs?

• Safety: nothing wrong happens
(Correctness)

• parallel versions of our programs should be
correct as their sequential implementations

• Liveliness: something good happens
eventually (Progress)

• if a sequential program terminates with a given
input, we want that its parallel alternative also
completes with the same input

• Performance
• we want to exploit our parallel hardware

Properties 3

A bit of terminology

• Hardware
• Processor

• CPU

• CPU-Core

• Logical Core

• Hardware thread

• Software
• Process

• Thread

• Fiber

• Task

4

• Programs
• Sequential

• Concurrent

• Parallel

• Distrubuted

• Memory
• Shared

• Distributed

Properties

The system model

• Threads (aka processes)

• Cores (aka cpus)

• Shared memory

• Arbitrary long asynchronous delays

• Scheduler
• A system component that decides

which/when a thread runs on a given core

5Properties

Scalability
Correctness conditions

Progress conditions

The cost of synchronization

7

…zZz…

SHARED RESOURCE

Properties – Scalability

The cost of synchronization

8

1x

2x

4x

1.5x 1.8x

Properties – Scalability

Amdahl Law – Fixed-size Model (1967)

9Properties – Scalability

Amdahl Law – Fixed-size Model (1967)

• The workload is fixed: it studies how the behavior
of the same program varies when adding more
computing power

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
𝑇𝑠

𝑇𝑝
=

𝑇𝑠

𝛼𝑇𝑠 + (1 − 𝛼)
𝑇𝑠
𝑝

=
1

𝛼 +
(1 − 𝛼)

𝑝
• where:

• 𝛼 ∈ [0,1]: Serial fraction of the program
• 𝑝 ∈ 𝑁: Number of processors
• 𝑇𝑠 : Serial execution time

• 𝑇𝑝 : Parallel execution time

• It can be expressed as well vs. the parallel fraction
𝑃 = 1 − 𝛼

10Properties – Scalability

Amdahl Law – Fixed-size Model (1967)

11Properties – Scalability

How real is this?

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 = lim
𝑝→∞

1

𝛼 +
(1 − 𝛼)

𝑝

=
1

𝛼

• If the sequential fraction is 20%, we have:

lim
𝑝→∞

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

0.2
=5

• Speedup 5 using infinite processors!

12Properties – Scalability

Fixed-time model

13Properties – Scalability

Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the
behavior of the scaled program varies when adding
more computing power

𝑊′ = 𝛼𝑊 + 1 − 𝛼 𝑝𝑊

𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 =
𝑊′

𝑊
= 𝛼 + 1 − 𝛼 𝑝

• where:
• 𝛼 ∈ [0,1]: Serial fraction of the program
• 𝑝 ∈ 𝑁: Number of processors
• 𝑊 : Original workload
• 𝑊′ : Scaled workload

14Properties – Scalability

Speed-up according to Gustafson

15Properties – Scalability

Memory-bounded model

16Properties – Scalability

Sun Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑊∗

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

𝛼𝑊 + 1 − 𝛼 𝐺 𝑝
𝑊
𝑝

=
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• where:
• 𝐺(𝑝) describes the workload increase as the memory

capacity increases

• 𝑊∗ = 𝛼𝑊 + 1 − 𝛼 𝐺 𝑝 𝑊

17Properties – Scalability

Speed-up according to Sun Ni

𝑆𝑆𝑢𝑛−𝑁𝑖 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼
𝐺 𝑝

𝑝

• If 𝐺 𝑝 = 1

𝑆𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝛼 +
1 − 𝛼

𝑝

• If 𝐺 𝑝 = 𝑝
𝑆𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝛼 + 1 − 𝛼 𝑝

• In general, 𝐺 𝑝 > 𝑝 gives a higher scale-up

18Properties – Scalability

Superlinear speedup

• Can we have a Speed-up > p ?
• Workload increases more than computing power (G(p) >

p)

• Cache effect: larger accumulated cache size. More or
even all of the working set can fit into caches and the
memory access time reduces dramatically

• RAM effect: enables the dataset to move from disk into
RAM drastically reducing the time required, e.g., to
search it.

19

Yes!

Properties – Scalability

Scalability

• Efficiency

𝐸 =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

#𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

• Strong Scalability: If the efficiency is kept fixed
while increasing the number of processes and
maintain fixed the problem size

• Weak Scalability: If the efficiency is kept fixed
while increasing at the same rate the problem size
and the number of processes

20Properties – Scalability

Scalability
Correctness conditions

Progress conditions

Correctness in a sequential world

• What does it mean for a program to be correct?

• Simplification: We mask any program/algorithm
behind the concept of ABSTRACT DATA TYPE

• An Abstract Data Type (ADT) defines:
• A state

• The domain of its values

• Operations/methods

• Constraints to apply operations/methods

• An ADT specification do not care about
implementations

• Typically, operations and their constraints are
defined via pre-conditions and post-conditions

Properties – Correctness 22

Example: FIFO Queue ADT

• init():
• pre: state = NULL

• post: state = []

• enqueue(x):
• pre: state != NULL

• post: state = state,x

• dequeue()(x):
• pre: state = x,seq

• post: state = seq

• dequeue()(NULL):
• pre: state = []

• post: -

Properties – Correctness 23

Correctness in a sequential world
• When considering only sequential:

• Methods do not overlap each other
• The effect/result of a method can be checked by inspecting

the state before/after their ending

• We totally ignore the fact that methods take time!

• We totally ignore the state during method invocations!

• Proving that a sequential implementation is correct:
• Ensure that for all possible (sequential) executions both pre

and post conditions always hold

• Focus on the correctness of an individual execution

Properties – Correctness 24

A
Enq(2)Deq()(NULL) Deq()(2)

Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 25

B

A

Enq(2)

Deq() return NULL

Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 26

B

A

Enq(2)

Deq() ret 2
Enq(1)

Correctness in a concurrent world?

• Threads invoke methods

• Threads can experience arbitrary large delays

• Methods are partially ordered intervals

• Methods could never be executed in isolation!

• We should describe any possible interleaving!

• What does it mean for a concurrent program to be
correct?

• What’s exactly a concurrent FIFO queue?

• FIFO implies a strict temporal ordering

• Concurrency implies an ambiguous temporal ordering

Properties – Correctness 27

Classical approach to concurrent programming

Based on blocking primitives
• Semaphores

• Locks acquiring

• Simple??

Properties – Correctness 28

PRODUCER

1. Semaphore p, c = 0;

2. Buffer b;

3.

4. while(1) {

5. wait(c);

6. <Write on b>

7. signal(p);

8. }

CONSUMER

1. Semaphore p, c = 0;

2. Buffer b;

3.

4. while(1) {

5. wait(p);

6. <Read from b>

7. signal(c);

8. }

Correctness in a concurrent world?
• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 29

B

A

Enq(2)

Deq() return NULL

M.E.

M.E.

Yes!

Deq() ret NULL Enq(2)

Correctness in a concurrent world?
• Threads invoke methods

• Threads can experience arbitrary large delays

• Is it correct?

Properties – Correctness 30

B

A

Enq(2)

Deq() ret 2Enq(1)

M.E.

M.E.

Yes!

M.E.

Enq(1)Enq(2) Deq() ret 2

Correctness

• Intuitively, if we rely on locks, changes happen in a
non-interleaved fashion, resembling a sequential
execution

• We can say a concurrent execution is correct only
because we can associate it with a sequential one,
which we know the functioning of

• An execution is correct if it is equivalent to a correct
sequential execution

Properties – Correctness 31

Correctness

• An is correct if it is equivalent to a
correct

Properties – Correctness 32

sequential execution
execution

sequential execution
execution

A simplified model of a concurrent system

• A concurrent system is a collection of sequential
threads/processes that communicate through
shared data structures called objects.

• An object has a unique name and a set of primitive
operations.

Properties – Correctness 33

A simplified model of a concurrent execution

• A history is a sequence of invocations and replies
generated on an object by a set of threads

• Invocation:

Properties – Correctness 34

A op(args*) xthread id object instance

method name

list of parameters

• Reply:

A ret(res*) x

list of returned values

reply token

A simplified model of a concurrent execution

• A sequential history is a history where all the
invocations have an immediate response

• A concurrent history is a history that is not
sequential

Properties – Correctness 35

Sequential

H’: A op() x
 A ret() x
 B op() x
 B ret() x
 A op() y
 A ret() y

Concurrent

H: A op() x
 B op() x
 A ret() x
 A op() y
 B ret() x
 A ret() y

Correctness

• An is correct if it is equivalent to a
correct

Properties – Correctness 36

 A history is correct if it is to a correct
sequential history

equivalentequivalent

sequential execution
execution

A simplified model of a concurrent execution

• A process subhistory H|P of a history H is the
subsequence of all events in H whose process
names are P

Properties – Correctness 37

H: A op() x
 B op() x
 A ret() x
 A op() y
 B ret() x
 A ret() y

H|A: A op() x
 A ret() x
 A op() y
 A ret() y

• Process subhistories are always sequential

H: A op() x

 A ret() x
 A op() y

 A ret() y

Equivalence between histories

• Two histories H and H’ are equivalent if for every
process P, H|P=H’|P

Properties – Correctness 39

H: A op() x
 B op() x
 A ret() x
 A op() y
 B ret() x
 A ret() y

H|A:
H’|A: A op() x
 A ret() x
 A op() y
 A ret() y

H’: B op() x
 B ret() x
 A op() x
 A ret() x
 A op() y
 A ret() y

H: A op() x

 A ret() x
 A op() y

 A ret() y

H’:

 A op() x
 A ret() x
 A op() y
 A ret() y

H|B:
H’|B: B op() x
 B ret() x

H:
 B op() x

 B ret() x

H’: B op() x
 B ret() x

Correctness conditions

• A is correct if it is
equivalent to a correct

Properties – Correctness 40

sequential execution
concurrent execution

 A history is correct if it is to a correct
sequential history

equivalent
which satisfies a given correctness

condition

• A correctness condition specifies the set of histories to be
considered as reference

In order to implement correctly a concurrent object wrt a
correctness condition, we must guarantee that every
possible history on our implementation satisfies the
correctness condition

Sequential Consistency [Lamport 1970]

• A history H is sequentially consistent if

1. it is equivalent to a sequential history S

2. S is legal according to the sequential definition of
the object

 An object implementation is sequentially
consistent if every history associated with its usage
is sequentially consistent

Properties – Correctness 41

Sequential Consistency [Lamport 1970]

Properties – Correctness 42

Enq(1)

B

A

Enq(2) Deq(2)

A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

Sequential Consistency [Lamport 1970]

Properties – Correctness 43

A Enq(1) x

A ret() x

B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

H:

A Enq(1) x

A ret() x

H|A: B Enq(2) x

B ret() x

B Deq(2) x

B ret() x

H|B:

B Enq(2) x

B ret() x

A Enq(1) x

A ret() x

B Deq(2) x

B ret() x

H’:

• H’ is legal and sequential
• H is equivalent to H’
• H is correct w.r.t sequential consistency

Linearizability [Herlihy 1990]

• A concurrent execution is linearizable if:
• Each procedure appears to be executed in an indivisible

point (linearization point) between its invocation and
completion

• The order among those points is correct according to the
sequential definition of objects

Properties – Correctness 44

Linearizability [Herlihy 1990]

Properties – Correctness 45

Enq(1)

B

A

Enq(2) Deq(2)

Linearizability [Herlihy 1990]

Properties – Correctness 47

Enq(1)

B

A

Enq(2) Deq(2)

Linearizability [Herlihy 1990]

• A history H is linearizable if:

1. it is equivalent to sequential history S

2. S is correct according to the sequential definition
of objects

3. If a response precedes an invocation in the
original history, then it must precede it in the
sequential one as well

 An object implementation is linearizable if every
history associated with its usage can be linearized

Properties – Correctness 48

Linearizability [Herlihy 1990]

• Linearizability requires:
• Sequential Consistency

• Real-time order

• Linearizability ⇒ Sequential Consistency

• The composition of linearizable histories is still
linearizable

• Linearizability is a local property (closed under
composition)

Properties – Correctness 49

Quick look on transaction correctness conditions

• We can see a transaction as a set of procedures on
different object that has to appear as atomic

• Serializability requires that transactions appear to
execute sequentially, i.e., without interleaving.

• A sort of sequential consistency for multi-object atomic
procedures

• Strict-Serializability requires the transactions’ order
in the sequential history is compatible with their
precedence order

• A sort of linearizability for multi-object atomic procedures

Properties – Correctness 50

Strict Serializability

A bird’s eye view on correctness conditions

Properties – Correctness 51

Serializability

Sequential
Consistency

Linearizability

Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a
sequential order

Respects program order
in each thread

Consistent with
real-time ordering

Access multiple objects
atomically

Locality

Properties – Correctness 53

Correctness conditions (incomplete) taxonomy

Sequential
Consistency

Linearizability Serializability Strict
Serializability

Equivalent to a
sequential order

Respects program order
in each thread

Consistent with
real-time ordering

Access multiple objects
atomically

Locality

Properties – Correctness 54

Scalability
Correctness conditions

Progress conditions

Progress conditions

• Deadlock-freedom:
• Some thread acquires a lock eventually

• Starvation-freedom:
• Every thread acquires a lock eventually

Properties – Progress 56

Blocking synchronization

Properties – Progress 57

…zZz…

SHARED RESOURCE

The scheduler should guarantee
that the thread holding the lock

completes its critical section

Scheduler’s role

Progress conditions on multiprocessors

• Are not only about guarantees provided by a
method implementation

• Are also about the scheduling support needed to
provide progress

Requirement for lock-based applications

• Fair histories

Every thread takes an infinite number of concrete
steps

Properties – Progress 58

Progress conditions

• Deadlock-freedom:
• Some thread acquires a lock eventually
• Some method call completes in every fair execution

• Starvation-freedom:
• Every thread acquires a lock eventually
• Every method call completes in every fair execution

• Lock-freedom:
• Some method call completes in every execution

• Wait-freedom:
• Every method call completes in every execution

• Obstruction-freedom:
• Every method call, which executes in isolation,

completes

Properties – Progress 59

Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Properties – Progress 60

Independent Dependent

Non-blocking Blocking

For everyone -
Thread executes in

isolation
Fairness

For someone - Fairness

Progress taxonomy

Properties – Progress 61

Independent Dependent

Non-blocking Blocking

For everyone
Wait

freedom
Obstruction

freedom
Starvation
freedom

For someone
Lock

freedom
Clash

freedom
Deadlock
freedom

Progress taxonomy

Properties – Progress 62

• The Einsteinium of progress conditions: it does not exist in nature
and (maybe) has no “commercial” value

• Clash freedom is a strictly weaker property than obstruction freedom

Maximal

Minimal

Progress conditions [informal]

• Minimal progress:
• Some method call completes

• Maximal progress
• Every method call completes

• Dependent
• Restrict the execution in which it provides progress

• Independent
• Provides progress in every execution

Properties – Progress 63

Progress conditions [informal]

• Deadlock-freedom:
• Some method call completes in every fair execution
• Minimal progress in every fair execution

• Starvation-freedom:
• Every method call completes in every fair execution
• Maximal progress in every fair execution

• Lock-freedom:
• Minimal progress in every execution

• Wait-freedom:
• Maximal progress in every execution

• Obstruction-freedom:
• Maximal progress in every execution where threads

taking an infinite number of steps run k>0 steps in
isolation

Properties – Progress 64

	Properties
	Slide 1: Properties of Concurrent Programs
	Slide 2: On concurrent programming
	Slide 3: What do we want from parallel programs?
	Slide 4: A bit of terminology
	Slide 5: The system model

	Property - Scalability
	Slide 6
	Slide 7: The cost of synchronization
	Slide 8: The cost of synchronization
	Slide 9: Amdahl Law – Fixed-size Model (1967)
	Slide 10: Amdahl Law – Fixed-size Model (1967)
	Slide 11: Amdahl Law – Fixed-size Model (1967)
	Slide 12: How real is this?
	Slide 13: Fixed-time model
	Slide 14: Gustafson Law—Fixed-time Model (1989)
	Slide 15: Speed-up according to Gustafson
	Slide 16: Memory-bounded model
	Slide 17: Sun Ni Law—Memory-bounded Model (1993)
	Slide 18: Speed-up according to Sun Ni
	Slide 19: Superlinear speedup
	Slide 20: Scalability

	Properties - Correctness
	Slide 21
	Slide 22: Correctness in a sequential world
	Slide 23: Example: FIFO Queue ADT
	Slide 24: Correctness in a sequential world
	Slide 25: Correctness in a concurrent world?
	Slide 26: Correctness in a concurrent world?
	Slide 27: Correctness in a concurrent world?
	Slide 28: Classical approach to concurrent programming
	Slide 29: Correctness in a concurrent world?
	Slide 30: Correctness in a concurrent world?
	Slide 31: Correctness
	Slide 32: Correctness
	Slide 33: A simplified model of a concurrent system
	Slide 34: A simplified model of a concurrent execution
	Slide 35: A simplified model of a concurrent execution
	Slide 36: Correctness
	Slide 37: A simplified model of a concurrent execution
	Slide 39: Equivalence between histories
	Slide 40: Correctness conditions
	Slide 41: Sequential Consistency [Lamport 1970]
	Slide 42: Sequential Consistency [Lamport 1970]
	Slide 43: Sequential Consistency [Lamport 1970]
	Slide 44: Linearizability [Herlihy 1990]
	Slide 45: Linearizability [Herlihy 1990]
	Slide 47: Linearizability [Herlihy 1990]
	Slide 48: Linearizability [Herlihy 1990]
	Slide 49: Linearizability [Herlihy 1990]
	Slide 50: Quick look on transaction correctness conditions
	Slide 51: A bird’s eye view on correctness conditions
	Slide 53: Correctness conditions (incomplete) taxonomy
	Slide 54: Correctness conditions (incomplete) taxonomy

	Properties – Progress
	Slide 55
	Slide 56: Progress conditions
	Slide 57: Blocking synchronization
	Slide 58: Scheduler’s role
	Slide 59: Progress conditions
	Slide 60: Progress taxonomy
	Slide 61: Progress taxonomy
	Slide 62: Progress taxonomy
	Slide 63: Progress conditions [informal]
	Slide 64: Progress conditions [informal]

