
Programmazione concorrente
Laurea Magistrale in Ingegneria Informatica

Università Tor Vergata

Docente: Romolo Marotta

Concurrent data structures

1. Stack

2. Set

Concurrent
Data Structures:

Stacks

POP()

Stack implementation

• Stack methods:
• push(v)

• pop()

• Implemented as a linked list

Concurrent data structures - Stack 3

H d c e T

PUSH(g)

POP()

PUSH(b)

POP()

Concurrent stack implementations

• Resort to a global lock

Concurrent data structures - Stack 4

H d c e T

PUSH(g)

POP()

PUSH(b)

Read-Modify-Write

• RMW instructions allow to read memory and
modify its content in an apparently
instantaneous fashion.

Concurrent data structures - Stack 5

1.RMW(MRegister *r, Function f){
2. atomic{
3. old = r;
4. *r = f(r);
5. return old;
6. }
7.}

• Even conventional atomic Load and Store can be
seen as RMW operations

Compare-And-Swap

• Compare-and-Swap (CAS) is an atomic instruction
used in multithreading to achieve synchronization

• It compares the contents of a memory area with a
supplied value

• If and only if they are the same
• The contents of the memory area are updated with the

new provided value

• Atomicity guarantees that the new value is
computed based on up-to-date information

• If, in the meanwhile, the value has been updated by
another thread, the update fails

• This instruction has been introduced in 1970 in the
IBM 370 trying to limit as much as possible the use
of spinlocks

Concurrent data structures - Stack 6

Compare-And-Swap

• RMW instructions allow to read memory and modify
its content in an apparently instantaneous fashion.

Concurrent data structures - Stack 7

1. CAS(Mregister *r, Value old_value, Value new_value f){
2. atomic{
3. Value res = *r;
4. if(*r == old_value) *r = new_value;
5. return res;
6. }
7. }

• CAS is implemented by x86 architectures (see CMPXCHG)

• gcc offers the __sync_val_compare_and_swap builtin

Attempt 1

Push:

1. Get head next

2. Insert the new item with a
CAS

3. If CAS fails, restart

Concurrent data structures - Stack 8

H T

Delete:

1. Get head next

2. Disconnect the item with a
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent data structures - Stack 9

Push:

1. Get head next

2. Insert the new item with a
CAS

3. If CAS fails, restart

Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent data structures - Stack 10

H T

Delete:

1. Get head next

2. Disconnect the item with a
CAS

3. If CAS fails, restart

PUSH(a)

H a T

POP()

• Is it scalable?

b

a

CAS

CAS

 backoff

and restart
 backoff

and restart

Non-blocking stack – Attempt 2 [Treiber+BO]

Concurrent data structures - Stack 11

Concurrent stack implementations

• Resort to a global lock
• Do not scale

• Resort to a naïve non-blocking approach
• Do not scale

• Resort to a naïve non-blocking approach + Back off
• Do not scale, but conflict resilient

• How achieve scalability?

Concurrent data structures - Stack 12

H d c e T

PUSH(g)

POP()

Make back-off times useful

Non-blocking stack – Attempt 3

• How to take advantage of back-off times?

Concurrent data structures - Stack 13

H d c e T

PUSH(g)

Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent data structures - Stack 14

Push(3)

B

A

Pop()(3)

• A push A and a pop B are:
◦ concurrent to each other

◦ B returns the item inserted by A

 we can always take two points such that:
◦ A is the last one to insert an item before A linearizes

◦ B appears to extract the last item inserted (by A)

nothing happens here

Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent data structures - Stack 15

Push(3)

B

A

Pop()(3)

Push(1) Push(2) Pop()(2) Push(4) Pop()(4) Pop()(1)

Observation

• Concurrent matching push/pop pairs are always linearizable

Concurrent data structures - Stack 16

Push(3) Pop()(3)

Push(1) Push(2) Pop()(2) Push(4) Pop()(4) Pop()(1)

Non-blocking stack – Attempt 3

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while
waiting

• Match the two without interacting with the stack

Concurrent data structures - Stack 17

H d c e T

PUSH(g)

POP()

Non-blocking stack – Attempt 3

• How to take advantage of back-off times?

• Hope that an opposite operation arrives while
waiting

• Match the two without interacting with the stack

• How??

Concurrent data structures - Stack 18

H d c e T

g

Non-blocking stack – Elimination stack

• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of
the array

Concurrent data structures - Stack 19

Treiber Stack

PUSH(g)
CAS

fail
POP()

Non-blocking stack – Elimination stack

• Pair the Treiber stack with an array

• Algorithm:
1. Update the original stack via CAS

2. If CAS fails, publish the operation in a random cell of
the array

3. Wait for a matching operation

4. If no matching op, GOTO 1

Concurrent data structures - Stack 20

Treiber Stack

POP()

PUSH(h)

POP()

POP()

PUSH(k)

Non-blocking stack – Attempt 3

Concurrent data structures - Stack 21

Concurrent
Data Structures:

Sets

INSERT(35)

Set implementations

• Set methods:
• insert(k)

• delete(k)

• find(k)

• Implemented as an ordered linked list

Concurrent data structures - Set 23

H 10 20 30 40 50

INSERT(55)

DELETE(40)

INSERT(25)

T

Insert algorithm

Concurrent data structures - Set 24

H 10 20 30 40 50

INSERT(55)

T

Insert algorithm

Concurrent data structures - Set 25

H 10 20 30 40 50

left right

55

T

Insert algorithm

Concurrent data structures - Set 26

H 10 20 30 40 50 T

left right

55

Insert algorithm

Concurrent data structures - Set 27

H 10 20 30 40 50 T

left right

55

Delete algorithm

Concurrent data structures - Set 28

DELETE(40)

H 10 20 30 40 50 T

Delete algorithm

Concurrent data structures - Set 29

left right

H 10 20 30 40 50 T

Delete algorithm

Concurrent data structures - Set 30

H 10 20 30

40

50 T

left

right

Sequential set implementation

Concurrent data structures - Set 31

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}

INSERT(35)

Concurrent set – Attempt 1

• PESSIMISTIC approach

• Synchronize via global lock

Concurrent data structures - Set 32

H 10 20 30 40 50

INSERT(55)

DELETE(40)

INSERT(25)

Concurrent set – Attempt 1 (SRC)

Concurrent data structures - Set 33

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22. return res;
23.}

LOCK(&glock);

UNLOCK(&glock);

Concurrent set – Attempt 1

Concurrent data structures - Set 34

0

20

40

60

80

100

120

140

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Concurrent set – Attempt 1

Concurrent data structures - Set 35

H 10 20 30 40 50

INSERT(5)

Concurrent set – Attempt 1

• PESSIMISTIC approach

• Synchronize via global lock

NO SCALABILITY!

Concurrent data structures - Set 36

H 10 20 30 40 50

…zZz…

INSERT(35)

Concurrent set – Attempt 2

• Fine-grain approach

• Each node has its own lock

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

Concurrent data structures - Set 37

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

INSERT(25)

Search algorithm

Concurrent data structures - Set 38

H 10 20 30 40 50

INSERT(55)

T

Search algorithm

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

Concurrent data structures - Set 39

H 10 20 30 40 50

INSERT(55)

left right

55

T

Search algorithm

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

Concurrent data structures - Set 40

H 10 20 30 40 50

INSERT(55)

left right

55

T

Search algorithm

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

Concurrent data structures - Set 41

H 10 20 30 40 50

INSERT(55)

left right

55

T

Search algorithm

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

Concurrent data structures - Set 42

H 10 20 30 40 50

INSERT(55)

left right

55

T

Search algorithm

• Keep two locks at a time (lock coupling):
• One on the current node

• One on its predecessor

• Multiple threads access the data structure
simultaneously

Concurrent data structures - Set 43

H 10 20 30 40 50

left right

55

T

left right

5

Concurrent set – Attempt 2 (SRC)

Concurrent data structures - Set 44

1. node* search(int k, node **r){
2. node *l, *r_next;
3. l = set->head;
4.
5. *r = l->next;
6.
7. r_next = (*r)->next;
8. while((*r)->key < k){
9.
10. l = *r;
11. *r = r_next;
12.
13. r_next = (*r)->next;
14. }
15.}

1. bool do_operation(int k, int op_type){
2. bool res = true;
3. node *l,*r;
4.
5. l = search(k, &r);
6. switch(op_type){
7. case(INSERT):
8. if(r->key == k)
9. res = false;
10. else
11. l->next = new node(k,r);
12. break;
13. case(DELETE):
14. if(r->key == k)
15. l->next = r->next;
16. else
17. res = false;
18. break;
19. }
20.
21.
22.
23. return res;
24.}

LOCK(&glock);

UNLOCK(&glock);

UNLOCK(&l->lock);

LOCK(&l->lock);

UNLOCK(&l->lock);
UNLOCK(&r->lock);

LOCK(&(*r)->lock);

LOCK(&(*r)->lock);

Concurrent set – Attempt 2

Concurrent data structures - Set 45

0

20

40

60

80

100

120

140

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC

CHAINED

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Search algorithm

• Allows an increased parallelism but…

Concurrent data structures - Set 46

H 10 20 30 40 50

left right

55

T

Search algorithm

• Allows an increased parallelism but…

• High costs for lock handover

Concurrent data structures - Set 47

H 10 20 30 40 50

left right

55

T

Recap

• Explored two blocking strategies:

1. Global (coarse-grain) lock

Concurrent data structures - Set 48

.zZz.. SHARED RESOURCE

2. (Fine-grain) Lock coupling

.zZz..

SHARED RESOURCE

Concurrent set – Attempt 3

Concurrent data structures - Set 49

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

Concurrent set – Attempt 3

• NON-BLOCKING approach [Harris linked list]

• Search without acquiring any lock

• Apply updates with individual atomic instructions

Concurrent data structures - Set 50

H 10 20 30 40 50 T

INSERT(55)

DELETE(40)

Non-blocking insert & delete algorithms

Insert:

1. Search left and right
nodes

2. Insert the new item with a
CAS

3. If CAS fails restart from 1

Concurrent data structures - Set 51

H 10

20

T

left right

Delete:

1. Search left and right nodes

2. Disconnect the item with a
CAS

3. If CAS fails restart from 1

H 10 T

left right

CAS

CAS

INSERT(20) DELETE(10)

• Is it correct?

Incorrect delete algorithm

• Edge cases might lead to losing items!

Concurrent data structures - Set 52

TH 10

Incorrect delete algorithm

• Edge cases might lead to losing items!

Concurrent data structures - Set 53

left right

INSERT(20)

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10

Incorrect delete algorithm

• Edge cases might lead to losing items!

Concurrent data structures - Set 54

left right

INSERT(20)

DELETE(10)

CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

TH 10

Incorrect delete algorithm

• Edge cases might lead to losing items!

Concurrent data structures - Set 55

20

left right

INSERT(20)

DELETE(10)

T
CAS

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

H 10 CAS

H

Incorrect delete algorithm

• Edge cases might lead to losing items!

Concurrent data structures - Set 56

20

T

1. Thread A gets left and right node and go to sleep

2. Thread B disconnects the node containing 10

3. Thread A wakes up and add 20 after 10

4. The new item is lost

10

The correct delete algorithm

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical
deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

Concurrent data structures - Set 57

H 10 T
CAS

CAS

The correct delete algorithm

• Adopt logical deletion:

1. Get left and right node

2. Mark the item as deleted via CAS (logical
deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)

5. If CAS fails GOTO 4

Concurrent data structures - Set 58

H 10 T
CAS

CAS

• Typically memory objects are byte aligned
• The LSB is always 0! BIT STEALING!!!

0xff ... 0

ke y

10
mark

1

next

CAS

The correct delete algorithm

Concurrent data structures - Set 59

H 10

20

left right

INSERT(20)

DELETE(10)

T

CAS

fail

• Updates of the ”next” field by two opposite concurrent operations
cannot both succeed

• What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!

Non-blocking search

• The search returns two adjacent non-marked (left
and right) nodes

• Housekeeping: disconnect logically delete items
during searches

Concurrent data structures - Set 60

H 10 20 30 40 50 T

Non-blocking search

• The search returns two adjacent non-marked (left
and right) nodes

• Housekeeping: disconnect logically delete items
during searches

Concurrent data structures - Set 61

H 10 20 30 40 50

left right

40

T

Non-blocking search

• The search returns two adjacent non-marked (left
and right) nodes

• Housekeeping: disconnect logically delete items
during searches

Concurrent data structures - Set 62

H 10 20 30 40 50

left right

40

T

Non-blocking search

• The search returns two adjacent non-marked (left
and right) nodes

• Housekeeping: disconnect logically delete items
during searches

Concurrent data structures - Set 63

H 10 20 30 40 50 T
CAS

left right

40

Concurrent set – Attempt 3 (SRC)

Concurrent data structures - Set 64

1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r); /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false; /* key present in the set */
7. n->next = r;
8. l->next = n; /* insert the item */
9.
10.
11. break;
12. case(DELETE):
13. if(r->key != k) return false; /* key not present */
14. l->next = r->next; /* remove the key */
15.
16.
17.
18. break;
19. }
20. return true;
21.}

Concurrent set – Attempt 3 (SRC)

Concurrent data structures - Set 65

1. bool do_operation(int k, int op_type){
2. node *l,*r, *n = new node(k);
3. l = search(k, &r); /* get left and right node */
4. switch(op_type){
5. case(INSERT):
6. if(r->key == k) return false; /* key present in the set */
7. n->next = r;
8. l->next = n; /* insert the item */
9. if(!CAS(&l->next, r, n))
10. goto 3; /* insertion failed the item -> restart */
11. break;
12. case(DELETE):
13. if(r->key != k) return false; /* key not present */
14. l->next = r->next; /* remove the key */
15. if(is_marked_ref((l=r->next)) || !CAS(&r->next, l, mark(l)))
16. goto 3; /* insertion failed the item -> restart */
17. search(k,&r); /* repeat search */
18. break;
19. }
20. return true;
21.}

Concurrent set – Attempt 3 (SRC)
1. node* search(int k, node **r){

2. node *l, *t, *t_next, *l_next;

3. *t = set->head;

4. t_next = t->head->next;

5. while(1){ /* FIND LEFT AND RIGHT NODE */

6. if(!is_marked(t_next)){

7. l = t;

8. l_next = t_next;

9. }

10. t = get_unmarked_ref((t_next);

11. t_next = t->next;

12. if(!is_marked_ref(t_next) && t->key >= k) break;

13. }

14. *r = t;

15. /* DEL MARKED NODES */

16. if(l_next != *r && !CAS(&l->next, l_next, *r) goto 3;

17. return l;

18.}

Concurrent data structures - Set 66

0

200

400

600

800

1000

1200

1400

1600

0 8 16 24 32

KO
p

s

#Threads

PESSIMISTIC CHAINED

LOCK-FREE

Concurrent set – Attempt 3

Concurrent data structures - Set 67

AMD Opteron 6128 – 32Cores
 KeyRange = [0,6000] SetSize = 2400 Update=100%

Safety and liveness guarantees

• The algorithm is NON-BLOCKING (LOCK-FREE):
• If a thread A is stuck in a retry loop => a CAS fails each

time

• If a CAS fail, it is because of another CAS that was
successfully executed by a thread B

• Thread B is making progress

• The algorithm is LINEARIZABLE:
• Each method execution take effect in an atomic point (a

successful CAS) contained between its invocation and
reply

• The order obtained by using these points has been
proved to be compliant with the Set semantic

Concurrent data structures - Set 68

Progress (Lock freedom)

• Each method update method has two main steps
• A search, which might end with a CAS

• A CAS to insert delete a node

1. Suppose an update method is stuck in a search:
• The key range is finite, so the number of node is finite

• It continuously fails to disconnect marked nodes

• It means that new nodes have been both inserted and
marked!

• Other threads have completed update methods

2. Suppose an updated method always fails its last step
(insertion or marking)
• Other threads have modified the target next pointer

• If it is due to the disconnection of marked nodes, see point 1

• If it is due to the updated step other methods have completed

Concurrent data structures - Set 69

Safety (Linearizability)

1. The search returns 2 adjacent nodes in an atomic
point
1. The read of next field of the left node

2. The CAS that make left and right adjacent

• It is like that the search made a snapshot of
interested key interval

2. Find, unsuccessful delete and unsuccessful insert
linearize with the search (1.1 or 1.2)

3. Insert linearizes with the successful CAS to
connect a new node

4. Delete linearizes with the successful CAS to mark
a node

Concurrent data structures - Set 70

Problems

• It is not possible to flip a bit of a reference on
memory-managed languages (e.g. JAVA)

• How to solve?

Concurrent data structures - Set 71

Locks + Optimism

• Use one lock per node

• Move “marked” to a dedicated field

Concurrent data structures - Set 72

H 10 20 30 40 50 T

INSERT(35)

Locks + Optimism (insert)

• Use one lock per node

• Move “marked” to a dedicated field

• Find left and right without taking locks!

• Take locks

• Insert the node

Concurrent data structures - Set 73

H 10 20 30 40 50 T

left right

35

Locks + Optimism (delete)

• Use one lock per node

• Move “marked” to a dedicated field

• Find left and right without taking locks!

• Take locks

• Mark node and then disconnect it

Concurrent data structures - Set 74

H 10 20 30 40 50 T

left right

del 40

Locks + Optimism (delete)

• Why “optimistic”?

• What could go wrong?

Concurrent data structures - Set 75

H 10 20 30 40 50 T

left right

35

Do work (search) and hope nothing wrong happens!

Locks + Optimism (delete)

• Why “optimistic”?

• What could go wrong?
• Left and/or right being marked

• Left and right not adjacent

• How to solve?

• Validation of search results:
• Left unmarked

• Right unmarked

• Left.next = right

Concurrent data structures - Set 76

Do work (search) and hope nothing wrong happens!

Locks + Optimism (delete)

• Why “optimistic”?

• What could go wrong?
• Left and/or right being marked

• Left and right not adjacent

• How to solve?

• Validation of search results:
• Left unmarked

• Right unmarked

• Left.next = right

Concurrent data structures - Set 77

Do work (search) and hope nothing wrong happens!

Locks + Optimism = Lazy List

• What about correctness?

• What about progress?

Concurrent data structures - Set 78

Can we do better?

• Costs: O(n)

• Starting from scalable “simple” set implementation
we can build faster set implementations

• Hash table: O(1)
• Array of buckets

• Buckets are concurrent ordered-list based sets

• We know that a search in an ordered set could be
more efficient O(log(n))

• How?

Concurrent data structures - Set 79

	Concurrent structures
	Slide 1: Concurrent data structures

	Stack
	Slide 2
	Slide 3: Stack implementation
	Slide 4: Concurrent stack implementations
	Slide 5: Read-Modify-Write
	Slide 6: Compare-And-Swap
	Slide 7: Compare-And-Swap
	Slide 8: Attempt 1
	Slide 9: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 10: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 11: Non-blocking stack – Attempt 2 [Treiber+BO]
	Slide 12: Concurrent stack implementations
	Slide 13: Non-blocking stack – Attempt 3
	Slide 14: Observation
	Slide 15: Observation
	Slide 16: Observation
	Slide 17: Non-blocking stack – Attempt 3
	Slide 18: Non-blocking stack – Attempt 3
	Slide 19: Non-blocking stack – Elimination stack
	Slide 20: Non-blocking stack – Elimination stack
	Slide 21: Non-blocking stack – Attempt 3

	Set
	Slide 22
	Slide 23: Set implementations
	Slide 24: Insert algorithm
	Slide 25: Insert algorithm
	Slide 26: Insert algorithm
	Slide 27: Insert algorithm
	Slide 28: Delete algorithm
	Slide 29: Delete algorithm
	Slide 30: Delete algorithm
	Slide 31: Sequential set implementation
	Slide 32: Concurrent set – Attempt 1
	Slide 33: Concurrent set – Attempt 1 (SRC)
	Slide 34: Concurrent set – Attempt 1
	Slide 35: Concurrent set – Attempt 1
	Slide 36: Concurrent set – Attempt 1
	Slide 37: Concurrent set – Attempt 2
	Slide 38: Search algorithm
	Slide 39: Search algorithm
	Slide 40: Search algorithm
	Slide 41: Search algorithm
	Slide 42: Search algorithm
	Slide 43: Search algorithm
	Slide 44: Concurrent set – Attempt 2 (SRC)
	Slide 45: Concurrent set – Attempt 2
	Slide 46: Search algorithm
	Slide 47: Search algorithm
	Slide 48: Recap
	Slide 49: Concurrent set – Attempt 3
	Slide 50: Concurrent set – Attempt 3
	Slide 51: Non-blocking insert & delete algorithms
	Slide 52: Incorrect delete algorithm
	Slide 53: Incorrect delete algorithm
	Slide 54: Incorrect delete algorithm
	Slide 55: Incorrect delete algorithm
	Slide 56: Incorrect delete algorithm
	Slide 57: The correct delete algorithm
	Slide 58: The correct delete algorithm
	Slide 59: The correct delete algorithm
	Slide 60: Non-blocking search
	Slide 61: Non-blocking search
	Slide 62: Non-blocking search
	Slide 63: Non-blocking search
	Slide 64: Concurrent set – Attempt 3 (SRC)
	Slide 65: Concurrent set – Attempt 3 (SRC)
	Slide 66: Concurrent set – Attempt 3 (SRC)
	Slide 67: Concurrent set – Attempt 3
	Slide 68: Safety and liveness guarantees
	Slide 69: Progress (Lock freedom)
	Slide 70: Safety (Linearizability)
	Slide 71: Problems
	Slide 72: Locks + Optimism
	Slide 73: Locks + Optimism (insert)
	Slide 74: Locks + Optimism (delete)
	Slide 75: Locks + Optimism (delete)
	Slide 76: Locks + Optimism (delete)
	Slide 77: Locks + Optimism (delete)
	Slide 78: Locks + Optimism = Lazy List
	Slide 79: Can we do better?

