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Concurrent data structures

Stack

Set

Priority queues
FIFO queues

> W oE



Stacks




Stack implementation

» Stack methods:
* push(v)
* pop()
* Implemented as a linked list

( pop) )
(" PUSH(b) )

(" popr() )
(" PUSH(g) )
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Concurrent stack implementations
* Resort to a global lock

( pop) )
(" PUSH(b) )
(" popr() )

(" PUSH(g) ) x
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Read-Modify-Write

 RMW Instructions allow to read memory and
modify its content in an apparently
iInstantaneous fashion.

1.RMW(MRegister *r, Function f){
2. atomic{

3. old = r;

4. *r = f(r);

5 return old;

6. }

7.}
* Even conventional atomic Load and Store can be
seen as RMW operations
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Compare-And-Swap

« Compare-and-Swap (CAS) Is an atomic instruction
used in multithreading to achieve synchronization

* It compares the contents of a memory area with a
supplied value

« |If and only if they are the same

* The contents of the memory area are updated with the
new provided value

* Atomicity guarantees that the new value Is
computed based on up-to-date information

* If, In the meanwhile, the value has been updated by
another thread, the update fails

* This instruction has been introduced in 1970 in the
IBM 370 trying to limit as much as possible the use
of spinlocks
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Compare-And-Swap

 RMW instructions allow to read memory and modify
Its content In an apparently instantaneous fashion.

1. CAS(Mregister *r, Value old value, Value new value f){
2. atomic{

3. Value res = *r;

4. if(*r == old value) *r = new value;

5. return res;

6. }

7.}

* CAS is implemented by x86 architectures (see CMPXCHG)
» gcc offersthe _ _sync _val compare_and swap builtin
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Attempt 1

Push: Delete:

1. Get head next 1. Get head next

2. Insertthe newitemwitha 2 Disconnect the item with a
CAS CAS

3. If CAS falls, restart 3. If CAS fails, restart

(" PUSH(a) ) ‘ (por) ) ‘

d

e |s it scalable?
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Non-blocking stack — Attempt 2 [Treiber+BQO]

Throughput
8000
c 7000
0
"E:'_c 6000 -
%E 5000
‘s g 4000 -
© ® 3000
-E * 2000 -
S Treiber
< 1000
1 2 4 8 14 32
Threads

Concurrent data structures - Stack ]



Non-blocking stack — Attempt 2 [Treiber+BQO]

Push: Delete:
1. Get head next 1. Get head next
2. Insertthe new item witha 2, Disconnect the item with a

CAS CAS
3. If CAS fails, restaft backoff 3. |f CAS fails, restart backoff

and restart and restart
(" PUSH(a) )
‘ (" pop() ) ‘
RN b
] e 3/@'@ L (o [ (1]
d

e |s it scalable?
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Non-blocking stack — Attempt 2 [Treiber+BQO]

Throughput
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Concurrent stack implementations

* Resort to a global lock
* Do not scale

« Resort to a naive non-blocking approach
* Do not scale

* Resort to a naive non-blocking approach + Back off
* Do not scale, but conflict resilient

* How achieve scalability? Make back-off times useful

(" popr() )
(" PUSH(g) )

]G] e[ FHe [ ]
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Non-blocking stack — Attempt 3

- How to take advantage of back-off times?




Observation

« Concurrent matching push/pop pairs are always linearizable

A0 | .
B | ” POIO()‘(“3) | »
|
:

nothing happens here

* A push Aand a pop B are:
o concurrent to each other
o B returns the item inserted by A

—> we can always take two points such that:
o Ais the last one to insert an item before A linearizes
o B appears to extract the last item inserted (by A)
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Observation

« Concurrent matching push/pop pairs are always linearizable

AI | - Push(3!)£‘ | »
B . Pop()(3) .

Push(1) Push(2) Pop()(2) Push(4) Pop()(4) Pop()(1)
— - s 3 s - = >
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Observation

« Concurrent matching push/pop pairs are always linearizable

Push(3) Pop()(3)
%1%

Push(1) Push(2)l Pop()(2) lPush(4) l Pop()(4) JPop()(l)
— - s 3 s - = >
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Non-blocking stack — Attempt 3

How to take advantage of back-off times?

Hope that an opposite operation arrives while
waiting

Match the two without interacting with the stack

o

g POP() )
Q QO

»
(" PUSH(g) )
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Non-blocking stack — Attempt 3

- How to take advantage of back-off times?

* Hope that an opposite operation arrives while
waiting

« Match the two without interacting with the stack

« How?? @




Non-blocking stack — Elimination stack

- Pair the Treiber stack with an array

* Algorithm:
1. Update the original stack via CAS
2. If CAS fails, publish the operation in a random cell of

the array
( POP() ) fail
§Treiber Stack
CAS
(" PUSH(g) )

Concurrent data structures - Stack 19




Non-blocking stack — Elimination stack

- Pair the Treiber stack with an array

* Algorithm:
1. Update the original stack via CAS
2. If CAS falls, publish the operation in a random cell of
the array
3. Wait for a matching operation

4. 1fno wng op, GOTO 1

(. POP()  ——— ::9
( PUSH(h) r— =
(__POP()  F——_ > Treiber Stack
(. por() - >
_'.’/

(' PUSH() r— |

Concurrent data structures - Stack 20




Non-blocking stack — Attempt 3

Throughput
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Set implementations

« Set methods:
* insert(k)
« delete(k)
—fFind{io-

* Implemented as an ordered linked list

(INSERT(35) )

(INSERT(25) )

( DELETE(40) )

(INSERT(55) )
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Insert algorithm

(INSERT(55) )




Insert algorithm
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Insert algorithm
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Insert algorithm
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Delete algorithm

( DELETE(40) )




Delete algorithm
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Delete algorithm
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Seqguential set Implementation

OLooNOOTUVLID, WDNPR

22.

. bool do operation(int k, int op type){ 1
bool res = true; 2.
node *1,*r; 3.

4.
1 = search(k, &r); 5.
switch(op type){ 6.
case(INSERT): 7.
if(r->key == k) 8.
res = false; 9.
else 10.
1->next = new node(k,r); 11.
break; 12.
case(DELETE): 13.
if(r->key == k) 14.
1->next = r->next; 15.

else

res = false;

break;

return res;

Concurrent data structures - Set

. node* search(int k, node **r){

node *1, *r next;
1 = set->head;

*r = 1->next;

r_next = (*r)->next;
while((*r)->key < k){

1l = *r;
*r = r_next;

r_next = (*r)->next;




Concurrent set — Attempt 1

« PESSIMISTIC approach
« Synchronize via global lock

(INSERT(35) )

(INSERT(25) )
( DELETE(40) )

(INSERT(55) H 1

L[H +{10




Concurrent set — Attempt 1 (SRC)

1. bool do_operation(int k, int op_type){ 1. node* search(int k, node **r){
2. bool res = true; 2 node *1, *r next;

3. node *1,*r; 3 1 = set->head;

4. LOCK(&glock); 4.

5. 1 = search(k, &r); 5. *r = 1l->next;

6. switch(op type){ 6

7. case(INSERT): 7 r_next = (*r)->next;
8. if(r->key == k) 8 while((*r)->key < k){
9. res = false; 9.

10. else . 10. 1 = *r;

11. 1->next = new node(k,r); 11, *r = r_next;

12. break; o 12.

13. case(DELETE): 13, r_next = (*r)->next;
14. if(r->key == k) 14, }

15. 1->next = r->next; - 15.}

16. else |

17. res = false;

18. break;

19. }

20. UNLOCK(&glock);

21.

22. return res;
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Concurrent set — Attempt 1

AMD Opteron 6128 — 32Cores
KeyRange = [0,6000] SetSize = 2400 Update=100%
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Concurrent set — Attempt 1

(" INSERT(5) )

+{10

e
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Concurrent set — Attempt 1

« PESSIMISTIC approach
* Synchronize via global lock
—NO SCALABILITY! @] @




Concurrent set — Attempt 2

* Fine-grain approach
 Each node has its own lock

- Keep two locks at a time (lock coupling):
* One on the current node
* One on its predecessor

(INSERT(35) )
(INSERT(25) )
( DELETE(40) )

(INSERT(55) )

|OF 3EF 3EF S0 TP SCF TG
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Search algorithm

(INSERT(55) )




Search algorithm

« Keep two locks at a time (lock coupling):
« One on the current node
* One on its predecessor

(INSERT(55) ) @

left right
$ 3§
H 10

2 (2

[

CERCEICERCENGD

Concurrent data structures - Set



Search algorithm

« Keep two locks at a time (lock coupling):
« One on the current node
* One on its predecessor

(INSERT(55) ) @

left right

3 3
(W10 30] € a0] 3] (a0 350 7] )

. *
L .
""sessammmnnns?®
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Search algorithm

« Keep two locks at a time (lock coupling):
« One on the current node
* One on its predecessor

(INSERT(55) ) @

left right

4 3

(] 3-{ad] O (o @y (o (o] (50 (1] |
1] |1
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L .
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Search algorithm

« Keep two locks at a time (lock coupling):
« One on the current node
* One on its predecessor

left right

4 3

(] (a0 (o @ (30 - (ao] {50 (1] )
’[l 1]

*
g .
---------------

(INSERT(55) )

.
-
.....
.......
-----------
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Search algorithm

« Keep two locks at a time (lock coupling):
* One on the current node
* One on its predecessor

» Multiple threads access the data structure

simultane@ @
% %

left right left right

$ 3 A 1
o 100 (0] £ 0] a0 (o] 3o By

1 (2 I F%
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Concurrent set — Attempt 2 (SRC)

OLooNOOTUVLID, WDNPR

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

. bool do operation(int k, int op type){ 1. node* search(int k, node **r){
bool res = true; 2. node *1, *r next;
node *1,*r; 3. 1l = set->head;
. =SSty 4. LOCK(&L->lock);
1 = search(k, &r); 5. *r = 1->next;
switch(op_type){ 6. LOCK(&(*r)->lock);
case(INSERT): 7. r_next = (*r)->next;
if(r->key == k) 8. while((*r)->key < k){
res = false; 9. UNLOCK(&1->1ock);
else . 10. 1 = *r;
1->next = new node(k,r); E 11. *r = r_next;
break; 12, LOCK(&(*r)->1lock);
case(DELETE): 13, r_next = (*r)->next;
if(r->key == k) 14, }
1->next = r->next; . 15.}
else |
res = false;
break;
}
O (Gt

UNLOCK(&1->1ock);
UNLOCK (&r->1ock);
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Concurrent set — Attempt 2

AMD Opteron 6128 — 32Cores
KeyRange = [0,6000] SetSize = 2400 Update=100%
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Search algorithm
* Allows an increased parallelism but...

left right

\ ¢
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Search algorithm

 Allows an increased parallelism but...
* High costs for lock handover




Recap

» Explored two blocking strategies:
1. Global (coarse-grain) lock

SHARED RESOURCE
) (K )

@@

2. (Fine-grain) Lock coupling

SHARED RESOURCE




Concurrent set — Attempt 3

( DELETE(40) )

(INSERT(55) )

|OF 3EF 3EF S0 TP SCF TG




Concurrent set — Attempt 3

* NON-BLOCKING approach [Harris linked list]
« Search without acquiring any lock
* Apply updates with individual atomic instructions

( DELETE(40) )

(INSERT(55) ) }

L[H J—{10] J—{20] J{30] Ja0 H{s0] S




Non-blocking insert & delete algorithms

Insert: Delete:
1. Search left and right 1. Search left and right nodes
nodes 2. Disconnect the item with a
2. Insert the new item with a CAS
CAS 3. If CAS fails restart from 1
3. If CAS falls restart from 1

left :
© right left  right

\ 4 . & 'l

TR T el
(INSERT(20) ) 2 (DELETE(10) )

e |s it correct?
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Incorrect delete algorithm

« Edge cases might lead to losing items!
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Incorrect delete algorithm

« Edge cases might lead to losing items!

OERE: )
(INSERT(20) ) t t

left right

Ll

Thread A gets left and right node and go to sleep

Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

s W
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Incorrect delete algorithm

« Edge cases might lead to losing items!

( DELETE(10) )

%[\
GE=tE Ul

(INSERT(20) ) t t

left right

Thread A gets left and right node and go to sleep

Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

s W
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Incorrect delete algorithm

« Edge cases might lead to losing items!

( DELETE(10) )

e O~
LIS ETET fj
(INSERT(20) ) f 20 f

left right

Thread A gets left and right node and go to sleep

Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

s W
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Incorrect delete algorithm

« Edge cases might lead to losing items!

] ul
o

Thread A gets left and right node and go to sleep

Thread B disconnects the node containing 10
Thread A wakes up and add 20 after 10

The new item is lost

s W
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The correct delete algorithm

» Adopt logical deletion:
1. Get left and right node

2. Mark the item as deleted via CAS (logical
deletion)

3. If CAS fails GOTO 1

4. Disconnect the item via CAS (physical deletion)
5. If CAS fails GOTO 4

.3 ;an




The correct delete algorithm

10 Oxff ...! %1

' mark

.

e Typically memory objects are byte aligned
e The LSB is always O! BIT STEALING!!!
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The correct delete algorithm

( DELETE(10) )

W T
(INSERT(20) ) ﬁ

left right

e Updates of the ”next” field by two opposite concurrent operations
cannot both succeed

* What to do upon conflict (failed CAS)? RESTART FROM SCRATCH!!
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Non-blocking search

* The search returns two adjacent non-marked (left
and right) nodes

* Housekeeping: disconnect logically delete items
during searches




Non-blocking search

* The search returns two adjacent non-marked (left
and right) nodes

* Housekeeping: disconnect logically delete items
during searches

s

4y 3
| {10l {2006 30&—(20] J{s0] J{1| ]
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Non-blocking search

* The search returns two adjacent non-marked (left
and right) nodes

* Housekeeping: disconnect logically delete items

during searches

left right




Non-blocking search

* The search returns two adjacent non-marked (left
and right) nodes

* Housekeeping: disconnect logically delete items
during searches

left right




Concurrent set — Attempt 3 (SRC)

1. bool do_operation(int k, int op_type){

2. node *1,*r, *n = new node(k);

3. 1 = search(k, &r); /* get left and right node */
4. switch(op_type){

5. case(INSERT):

6. if(r->key == k) return false; /* key present in the set */
7. n->next = r;

8. 1->next = n; /* insert the item */
9.

10.

11. break;

12. case(DELETE):

13. if(r->key != k) return false; /* key not present */
14. 1->next = r->next; /* remove the key */
15.

16.

17.

18. break;

19. }

20. return true;
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Concurrent set — Attempt 3 (SRC)

1. bool do_operation(int k, int op_type){

2. node *1,*r, *n = new node(k);

3. 1 = search(k, &r); /* get left and right node */
4. switch(op_type){

5. case(INSERT):

6. if(r->key == k) return false; /* key present in the set */

7. n->next = r;

8. 22 A S /* insert the item */

9. if(!CAS(&1->next, r, n))

10. goto 3; /* insertion failed the item -> restart */

11. break;

12. case(DELETE):

13. if(r->key != k) return false; /* key not present */

14. e el @iy /* remove the key */

15. if(is_marked _ref((l=r->next)) || !CAS(&r->next, 1, mark(1l)))
16. goto 3; /* insertion failed the item -> restart */

17. search(k,&r); /* repeat search */

18. break;

19. }

20. return true;
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Concurrent set — Attempt 3 (SRC)

1. node* search(int k, node **r){

2 node *1, *t, *t next, *1 next;

3 *t = set->head;

4 t next = t->head->next;

5. while(1){ /* FIND LEFT AND RIGHT NODE */
6 if(!is_marked(t_next)){

7 l = t;

8 1 next = t_next;

9. }

10. t = get unmarked ref((t_next);

11. t_next = t->next;

12. if(!is_marked_ref(t_next) && t->key >= k) break;

13. }

14. *r = t;

15. /* DEL MARKED NODES */

16. if(l _next != *r &% !ICAS(&l->next, 1 next, *r) goto 3;
17. return 1;

18.}
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Concurrent set — Attempt 3

AMD Opteron 6128 — 32Cores
KeyRange = [0,6000] SetSize = 2400 Update=100%
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Safety and liveness guarantees

* The algorithm is NON-BLOCKING (LOCK-FREE):

* |f athread A is stuck in a retry loop => a CAS fails each
time

* If a CAS fall, it is because of another CAS that was
successfully executed by a thread B

* Thread B is making progress

» The algorithm is LINEARIZABLE:

- Each method execution take effect in an atomic point (a
successful CAS) contained between its invocation and

reply
« The order obtained by using these points has been
proved to be compliant with the Set semantic
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Progress (Lock freedom)

- Each method update method has two main steps
« A search, which might end with a CAS
« A CAS to insert delete a node

1. Suppose an update method is stuck in a search:
* The key range is finite, so the number of node is finite
* It continuously fails to disconnect marked nodes

* |t means that new nodes have been both inserted and
marked!

» Other threads have completed update methods

2. Suppose an updated method always fails its last step
(insertion or marking)
« Other threads have modified the target next pointer
« If it Is due to the disconnection of marked nodes, see point 1
* If it is due to the updated step other methods have completed

Concurrent data structures - Set
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Safety (Linearizability)

1. The search returns 2 adjacent nodes in an atomic
point
1. The read of next field of the left node
2. The CAS that make left and right adjacent

* It is like that the search made a snapshot of
Interested key interval

2. Find, unsuccessful delete and unsuccessful insert
iInearize with the search (1.1 or 1.2)

3. Insert linearizes with the successful CAS to
connect a new node

4. Delete linearizes with the successful CAS to mark
a node
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Problems

* It Is not possible to flip a bit of a reference on
memory-managed languages (e.g. JAVA)

* How to solve?
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Locks + Optimism

* Use one lock per node
 Move “marked” to a dedicated field

(INSERT(35) ) }

g g g




Locks + Optimism (insert)

* Use one lock per node
* Move “marked” to a dedicated field
* Find left and right without taking locks!

* Take locks
* Insert the

left right

4 3
e g




Locks + Optimism (delete)

* Use one lock per node
* Move “marked” to a dedicated field
* Find left and right without taking locks!

 Take locks
» Mark node disconnect it

left right

4 3
e g




Locks + Optimism (delete)

° Why “OptimistiC”? Do work (search) and hope nothing wrong happens!
* What could go wrong?

G
&)

left right

$ 3
e e e




Locks + Optimism (delete)

° Why “OptimistiC”? Do work (search) and hope nothing wrong happens!

* What could go wrong?
- Left and/or right being marked
« Left and right not adjacent

* How to solve?

 VValidation of search results:
* Left unmarked
* Right unmarked
 Left.next = right
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Locks + Optimism (delete)

° Why “OptimistiC”? Do work (search) and hope nothing wrong happens!

* What could go wrong?
- Left and/or right being marked
« Left and right not adjacent

* How to solve?

 VValidation of search results:
* Left unmarked
* Right unmarked
 Left.next = right
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Locks + Optimism = Lazy List
* What about correctness?
* What about progress?




Can we do better?
* Costs: O(n)
« Starting from scalable “simple” set implementation

we can build faster set implementations

- Hash table: O(1)

* Array of buckets
* Buckets are concurrent ordered-list based sets

* We know that a search in an ordered set could be
more efficient O(log(n))

e How?
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Skip list [Pugh 1990]
* Generalization of sorted linked lists

« Randomized data structure
* Costs: O(log(n))

* |dea:
1. Maintain a core sorted linked list LO

2. Use additional sorted linked lists Li such that:
1. LicLi-1
2. |Li|] = |Li-1]/2

3. Searches use lists in decreasing order
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Skip list [Pugh 1990]

(Sea rch(50) )

T T ) T )
L2 H 30 T

— — !
o [H] 310 - 30 50 ST
o (1] 310 320 330 F—{ao] {30 7|
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Skip list [Pugh 1990]

( Insert(25) )

L2

L1

LO
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Skip list [Pugh 1990]

( Insert(25) )

2 [H] S (25] J30] - U
e N e ™ e ™ VS B e A e N
Ll \H J \10 J \25 J_ﬂ_/ \50 J \T J

Should | insert 25 at L1? Flip a coin!
Should | insert 25 at L2? Flip a coin!
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Skip list [Pugh 1990]

( Delete(25) )
O
12 -
11 110
L0 10

:50

:50
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Skip list [Pugh 1990]

* How many (expected) keys for each level?
«LO=N

L1 =N/2

L2 =N/4

;.I._(IogN) =1




Skip list [Pugh 1990]

 How many steps per level?




Non-blocking Skip list [Fraser2004]

( Insert(25) )

T T T
L2 H 30 T

— — ! —

- N N Y AT —
L ("] 719 7 30 3 29 Tl
o (] 310 {20 F-(30 F{ad {39 (7|
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Non-blocking Skip list [Fraser2004]

( Insert(25) )

L2

L1

LO
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Non-blocking Skip list [Fraser2004]

( Insert(25) )

O ] {3 an

12 (A {

4 M a 4 h ) . N\
L1 H 10 25| {30 50 T
! AN - J o | _ J N\
o (] 3 - 3G 3w - 3G
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Non-blocking Skip list [Fraser2004]

( Delete(25) )

2 (H] - (256 (30 - ul
e N s N\ ] —\ Ve ~N e

L1 H 10 25 30 50 T
\§ J & J = CAS - \§ J G

o (H] 1o :—@}”zsiﬁ 30 +{a0] J{s0] JH7
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Non-blocking Skip list [Fraser2004]

( Delete(25) )

] O\ S R
2 (H]E5F 25 J{30 - Ul

) TN CAS e A ) . N A
11 [(H]| {1055 \ /—@_} (50 (T

25
RN
o (- -G e - - 3G
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Priority queues



Priority queue implementations

* Priority Queue methods:
° enqueue(k): adds a new item
° dequeue(): returns and remove the highest priority item

* Implemented as an ordered linked Iist<—‘

This is a huge simplification.
( ENQ(35) ) Tipically they are implemented as
skip-lists (log(n)) or calendar queues
( ENQ(25) ) 9 (0(1)) y
(_ peq) )
(" ENQ(55) )

o ({3
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Priority queue — Attempt 1

* Engqueue: works as insertions in the non-blocking
Set
« Connect via CAS

» Dequeues: work as deletions in the non-blocking

Set

» Mark as logically deleted, but
 DISCONNECT IMMEDIATELY

 |s It scalable?
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Priority queue — Attempt 1

Queue Size = 256000

6 | | i | | I | I
o 2 Scalabilit 1
& : calability
o, | : collapse |
o 4 :
= :

Throughput
N
|

1 -
O | | | E | | | | | | | | ]
0O 4 8 12 16 20 24 28 32 36 40 44 48
#Threads
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Priority queues: an inherently “sequential” semantic

* Enqueue offers a high level of disjoint access
parallelism

» Dequeues are prone to conflicts

This region is highly shared
among processors’ caches

12

iy ey
W W
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Lazy deletion within priority queues

* If we use lazy deletion “as is”, we might obtain non-
linearizable extractions

A | Eng(0.1) | | Enq(6.5) |

Deq() Ret 6.5

1—fos}—| 1

Non-linearizable
extraction
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Correct lazy deletion within priority queues

 To implement correct extractions with lazy deletions
there are two main approaches

1. Move the logical mark of a node in the field
“next” of its predecessor

e (03—
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Correct lazy deletion within priority queues

 To implement correct extractions with lazy deletions
there are two main approaches

2. Use logical timestamps:

* Incremented each time a new minimum has been
Inserted

- extract item compatible with the timestamp read at the

i B\
e/

H {01 oA KM }—{65 | —(71}—{os}—| T
)4( Ts=0  Ts=0 Ts=0 Ts=1 Ts=0 Ts=0
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PQ — Attempt 2 - Introducing Conflict Resiliency

 Lazy deletion

 Skip logically deleted items = IT INCREASES THE
NUMBER OF STEPS  — EXPENSIVE IN TERMS OF IMPACT ON CACHE

* Periodic Housekeeping

H#Hdeleted items> threshold

< )

[ (70— ()L
—
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Priority queue — Attempt 2

(MOps/s)

Throughput

Queue Size = 256000

SLCO AN
NBCOQ O
CRCO-96 [ |

8 12 16 20 24 28 32 36 40 44 48
#Threads
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On the conflict resiliency trade off

* The number of steps per dequeue and costs of
housekeeping are dependent:

READ RMW

THRESHOLD ——) * *
* LATENCY @ and W impacT
READ RMW

THRESHOLD —) * *
* LATENCY @ and A \vpacT
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Conflict resiliency trade offs

(th)

Threshold

Queue Size = 2560000

th =1*#Threads
th =2*#Threads
th =3*#Threads

13 6 12 18 24 30 36 42 48
#Threads
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Priority queues — Attempt 3

(MOps/s)

Throughput

Queue Size = 2560000

NBCO O
CRCO-96 [
ACRCO &

4 8 12 106 20 24 28 32 36 40 44 48

#Threads
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Open challenges

How to achieve scalability for priority queues?
* NO ANSWER for correct priority queue

* The research moved on looking for RELAXED SEMANTICS
for priority queues

o Enable scalability for extractions by removing an item which is
“near” the minimum

* Explore orthogonal approaches by guaranteeing RELAXED
CORRECTNESS CONDITIONS
o K-linearizability
o Quasi-linearizabilty
o Quiescent consistency
o Sequential consistency?

* Explore new hardware capabilities (e.g. HTM)
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Why linearizable non-blocking algorithms?

* Performance is a good reason, but not the unique one

* The composition of linearizable algorithm is still
linearizable

* Blocking algorithms (and their composition) might suffer
from deadlocks, priority inversions and convoying

* The composition of non-blocking algorithms is non-
blocking as a whole (progress property of individual
algorithm might be hampered)

* Libraries should implement their algorithms in a non-
blocking linearizable fashion

o E.g. Java implements non-blocking concurrent data structure

Concurrent and parallel programming
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FIFO queue implementation

* Queue methods:
* enqueue(Vv)
* dequeue()

* Implemented as a linked list

(_ bEQ)) )
(__ENa(b) )

(_peq) )

(_ENQg) )

]G] e[ FHe [ ]




FIFO queue implementation

« Slightly different

* One dummy node, two pointers to access the data
structure:
* Head: points ALWAYS to a DUMMY node item
 Tail: SHOULD point to the youngest item

| |
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FIFO queue implementation

* Insert: * Dequeue:

1. Get node pointed by tail - @€t node pointed by head
2. Try to update head with its

2. Scan until nextis NULL  next
3. Try to insert with CAS 3. IfKOgoto1l
4. If KO goto 1

. Tall
5 CEEﬁ(%(JﬂStO update —5e)

A . “
l CAS ‘
C ls
- NULL

\

e L e
This becomes the J

new dummy node

-
u NULL
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The whole story

* Since the Iinsertion of a new Iitem and the tall
update are two separate RMW they might be
Inconsistent

 Also dequeuers might need to update tail before
updating head

* Thi hat TAIL hind HEAD
rys&g(.)sugest at cannot go behind

CAI :

(o (o)
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Emptiness condition

* There is a NULL node after the one pointed by
HEAD

( DpEq)) )

(o)
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