Programmazione concorrente
Laurea Magistrale in Ingegneria Informatica
Universita Tor Vergata

Docente: Romolo Marotta

Transactional Memory

Synchronization approaches:
 Non-blocking data structures
 Locks

 Transactional Memory

Transactional Memory

* Why?

o Fine grain locking (or non-blocking synchronization) can scale but
itis hard

o Locks do not scale in general, but they are hard too:
* Deadlocks
* Races (forgotten locks)
* Do not compose

* Transactions: Begin transaction
x.0p ()
y.op2 (k)
z.0p(J)
End transaction

o They compose (e.g. nested transactions)
o Simpler to reason about

Concurrent and parallel programming
3

Transactions

* Well known in the context of databases

* Conceived integration of transaction in hardware (1993)
e Software implementations (1995-2005)

 Commercial hardware support (2013)

Transaction on Transaction on
DBMS = Transactional Memory

Concurrent and parallel programming
4

Transactions

Transaction on top of Transaction on top of
DBMS = Transactional Memory

Application

Transactions

Hardware

d = x Begin:
y++
x++

n =y Commit

write(z, 1/ (n-d))

Abort Concurrent and parallel programming
)

Transactions

Transaction on top of Transaction on top of
DBMS = Transactional Memory

Application

Application

Transactions

Transactions .
Transactional Memory

Hardware Hardware

d = x Begin:
y++
x++

n =y Commit

write(z, 1/ (n-d))

Abort Concurrent and parallel programming
6

Transactions

Transaction on top of Transaction on top of
DBMS = Transactional Memory

Application

Application

Transactions
Transactions

Transactional Memory

Hardware Hardware

Managed by DBMS instead
of developers

Y
1/ (n—d) <

Concurrent and parallel programming

Transactions

Transaction on top of Transaction on top of
DBMS = Transactional Memory

Opacity:
Both committed and aborted

(view) serializability:
Committed transactions see

! transactions see
consistent values

consistent values

= 2 v =]

W X
|

Managed by DBMS instead

of developers Begl;:r

X++

n =y v Commit
write (z,l 1/ (n—d)l) <

Abort Concurrent and parallel programming
8

Histories

* The execution of transaction on a set of objects is modeled by a
history

* A history is a sequence of:
o QOperations (e.g., read, write, push, pop ...)
o Commits
o Aborts

* Two transactions are:

o sequential if one invokes its first operations after the other one
commits or aborts

o concurrent otherwise

* A history is:
o sequential if has only sequential transactions
o concurrent otherwise

* Two histories are equivalent if they have the same transactions

Concurrent and parallel programming
9

Correctness conditions (recall)

A concurrent execution is correct if it is equivalent to a
correct sequential execution

—> A history is correct if it is equivalent to a eerreet—
sequential history which satisfies a given correctness
condition

* A correctness condition specifies the set of histories to be
considered as reference

—|n order to implement correctly a concurrent object wrt a
correctness condition, we must guarantee that every
possible history on our implementation satisfies the
correctness condition

Concurrent and parallel programming

(View) Serializability [Papadimitriou1979]

* A history H of committed transactions is serializable if
° |t is equivalent to a sequential history H’
o H’ is sequential
o H’ is legal, aka every read returns the last written value

e Serializable?

W(q,1) — R(g,1) — R(p,0) — Com() — W(p,l) o 'Com() —

——————————————————

W(q,1) — R(p,0) — Com() & 'R(g,1) — W(p,1)’ - 'Com() —

——————————————————

Concurrent and parallel programming

(View) Serializability [Papadimitriou1979]

* A history H of committed transactions is serializable if
° |t is equivalent to a sequential history H’
o H’ is sequential
o H’ is legal, aka every read returns the last written value

e Serializable? Yes!

— W(q,1) — R(g,1) —R(p,0) H Com() = W(p,1)! — Com() —

——————

———————————

* Serializable?
W(q,1) — R(q,0) —{R(p,0) Com() 'W(p,l) - Com() —

—————————————————

>

——————————————————

Concurrent and parallel programming

(View) Serializability [Papadimitriou1979]

* A history H of committed transactions is serializable if

° |t is equivalent to a sequential history H’
o H’ is sequential
o H’ is legal, aka every read returns the last written value

e Serializable? Yes!

—W(a,1) — R(q,2) <{R(p,0) H com() - W(p,1) = Com() —

——————

-_— e - o e e e e e e e o)

— W(q,1) — R(q,0) — R(p,0) — Com() — W(p,1) — Com() —

-_— e e - - e o e e e e o)

Concurrent and parallel programming

(View) Serializability [Papadimitriou1979]

* A history H of committed transactions is serializable if

° |t is equivalent to a sequential history H’

o H’ is sequential
o H’ is legal, aka every read returns the last written value

e Serializable? Yes!

————————————

F—W(q,1) = R(q,1) {R(p,0) H Com() | W(p,1) = Com() —
* Serializable? N_o_! _______________
F— W(a,1) {R(a,0) ~{R(p,0) - Com() = W(p,1) ~ Com() —
* Serializable? Ygs_l _____________
W(,2) [R(q,0) — W(p,1) | Com() [R(p, 1) — Abo() —
W(q,1) W(p,1) { Com() >

Concurrent and parallel programming

(View) Serializability [Papadimitriou1979]

* Serializable? YesI But, what happens in the case of TM?

— w(a,1) — R(a,0) W(p,1) H com() = R(p,1) — Abo() _.

Divide byO! —m—+—v—— | if(!'A) x = tot/ (B-1)

Infinite loop! — while

e Could strict serializability be of any help?
o Serializability + Real-time order
o |t predicates only on committed transactions

Concurrent and parallel programming

Opacity [Guerraoui2008]

* A history H is opaque if
o |t is equivalent to a sequential history H’
o H’ is sequential
o H’ preserves transactions’ real-time order
o H’is legal

* Opaque?

W(p,1) H W(q,2) H Com() |- W(q,3) — R(p,1) — Com() h.

e Opaque? T Toomom mmmmmrmmmmm

W(p,1) HCom() £ R(p,1): R(q,2) AbO() =

——————————————————

——————— ———————————

Concurrent and parallel programming

Transactions

Transaction on top of Transaction on top of
DBMS = Transactional Memory

Opacity:
Both committed and aborted

(view) serializability:
Committed transactions see

! transactions see
consistent values

consistent values

= 2 v =]

W X
|

Managed by DBMS instead

of developers Begl;:r

X++

n =y v Commit
write (z,l 1/ (n—d)l) <

Abort Concurrent and parallel programming
17

Transactions

Deadlock or starvation Obstruction
freedom freedom

Opacity:
Both committed and aborted
transactions see
consistent values

(view) serializability:
Committed transactions see
consistent values

= 2 v =]

W X
|

Managed by DBMS instead

of developers Beg:;i;

X++

n =y v Commit
write (z,l 1/ (n—d)l) <

Abort Concurrent and parallel programming
18

Wait freedom

* Every correct transaction eventually commits

* Finite number of aborts

—————————————————

—————————————————

W(q,2)

Abo()

Concurrent and parallel programming

Wait freedom

* Every correct transaction eventually commits

* Finite number of aborts

—————————————————

—————————————————

W(q,2)

Abo()

Concurrent and parallel programming

Wait freedom

 Every correct transaction eventually commits
* Finite number of aborts

—————————————————

—{R(p,0) — 'R(q,0) — W(p,1) — Com() HW(q,2) H Abo() >

—————————————————

IMPOSSIBLE IN AN ASYNCHRONOUS SYSTEM

Concurrent and parallel programming

Obstruction freedom

 Every correct transaction that runs in isolation (without
contention) eventually commits

* Abort is unavoidable
e Contention manager can help with contention scenarios

* When a new transaction A creates a conflict with B

o Aggressive
* always abort B

o Backoff

* B waits an exp. back-off time, then abort A if still conflicting

o Karma

* Assign priority to A and B, abort lowest priority, increase priority after
abort

o Greedy

* Use start time as priority, if Pb < Pa and A is not waiting then B wait,
otherwise abort A

Concurrent and parallel programming

Transactions

Deadlock or starvation Obstruction
freedom freedom

Opacity:
Both committed and aborted
transactions see
consistent values

(view) serializability:
Committed transactions see
consistent values

d = x Begin: d = x Begin:
y++ y++
X+t X++
n =y Commit Abort Commit

write(z, 1/ (n-d))

Abort Concurrent and parallel programming
23

Software Transactional Memory

DSTM Application
JVSTM

RSTM Transactions
TL2 Software TM
TinySTM Hardware
SwissTM

MCcRT-STM

Bartok-STM

NOrec

LSA

E-STM

SXM

ASTM

WSTM
PhTM

Concurrent and parallel programming

DSTM [Hearlihy2003]

* Obstruction freedom + contention manager

* It works at object granularity

o Transactions open objects in READ/WRITE mode to apply an
operation

o Conflicts are detected when opening objects

* A conflicting write makes one of the two conflicting
transaction abort via contention manager (killer write)

* A read requires that all already-read objects are still the
most recently committed version (careful read)

* Validate all objects read upon commit

Concurrent and parallel programming

DSTM [Hearlihy2003]

* Transactions have:

o A status
Committed

Active
Aborted

o Collection of objects opened in READ mode

* Objects are incapsulated within a Transactional Object which keeps references to
o Transaction currently manipulating the object in WRITE mode

o Current and tentative versions of the object
with an intermediate objected called Locator

transaction_ptr
o new_obj_ ptr

Status Transaction T

Read_set

TObject O old_obj ptr

Locator L

Concurrent and parallel programming

A

Object data] Data d1

Object data] Data d0

26

DSTM - First open in WRITE mode [Hearlihy2003]

* Tis the current transaction, whose status is ACTIVE
* T allocates a new Locator L

* T accesses to current locator L' of O to retrieve last
transaction T’ that executed the last open in WRITE mode

Locator L >tatus = ACTIVE Transaction T
: Read set
transaction_ptr
new_obj_ptr
old_obj ptr
Status Transaction T’
Read_set
transaction_ptr -
o new_obj_ptr > Object data] Data d1
TObject O old_obj_ptr
Locator L Object data] Data dO

Concurrent and parallel programming

27

DSTM - First open in WRITE mode [Hearlihy2003]

* T behaves accordingly to T’ status

o ACTIVE: T calls the contention manager
* T waits a back-off time
* T makes T’ abort via Compare&Swap

Status = ACTIVE

Locator L Transaction T

\

: Read set

transaction_ptr

new_obj_ptr

old_obj_ptr

Status = ABORTED | r5nsaction T’
Read_set
transaction_ptr -
o new_obj_ptr > Object data] Data d1
TObject O old_obj_ptr
Locator U

Object data] Data d0

Concurrent and parallel programming

28

DSTM - First open in WRITE mode [Hearlihy2003]

* T behaves accordingly to T’ status
o ABORTED:

* Tuse L.old_obj_ptrto get current version of O
* L.old_obj ptr=_L.old_obj ptr

* L.new_obj ptr = CLONE(L.old_obj_ptr)

* Swap Ll and L

Status = ACTIVE

Locator L Transaction T
: Read set
transaction_ptr
new_obj_ ptr % Object data } Data d2 <« --=
old_obj_ptr Status = ABORTED

U

Transaction T

Read_set

i ﬁ transaction_ptr
¢ new_obj_ptr Object data] Data d1

TObject O gt old_obj ptr
\f CAS fa\\Sr epe Locator U Object data] DatadO ---

Concurrent and parallel programming

29

DSTM - First open in WRITE mode [Hearlihy2003]

* T behaves accordingly to T’ status
o COMMITTED:

* Tuse L.old_obj_ptrto get current version of O
* L.old_obj ptr=L.new_obj_ptr
* L.new_obj ptr = CLONE(L.new_obj_ptr)

’ Swap Uand L Locator L Status = ACTIVE Transaction T
: Read set

transaction_ptr
new_obj_ptr A{ Object data] Datad2 «---

old_obj ptr Status -
atus = COMMITTED | Transaction T’
Read_set
transaction_ptr -

w new_obj ptr > Object data] Datadl ----
old_obj ptr)
TObject O “epe oat!
\§ CAS fa\\sr Locator I Object data] Data dO

Concurrent and parallel programming

30

DSTM - First open in READ mode [Hearlihy2003]

* Validate Read_set (see later)

* Fetch current committed version V via current locator
o New_obj_ptrif T is committed
o Old_obj_ptr otherwise

* Add <O,V> to the Read_set Status = ACTIVE

Read_set
<0,d1>

Status = commitTeD Transaction T’
Read_set

Object data] Data d1

Transaction T

./ transaction_ptr
o new_obj_ ptr
TObject O old_obj ptr
Locator U

A
4 N

Object data] Data d0

Concurrent and parallel programming

31

DSTM - Already opened objects [Hearlihy2003]

* Already opened in READ mode:

o Retrieve V from the Read_set

* Already opened in WRITE mode:
o Retrieve V from the current locator

Status = ACTIVE
Read_set
<0,d1>

Locator L Transaction T

transaction_ptr

new_obj_ ptr

old_obj ptr

Object data } Data d2

TObject O

N

Object data] Data d1

Concurrent and parallel programming

DSTM — Commit [Hearlihy2003]

1. Validate the transaction

o Transaction aborts on WRITE/WRITE conflicts
* No need to validate WRITE upon commit

o Validate Read_set
* For each pair <O,V> check that V is still the most recent committed version

o Read_set validation is non atomic
* Check the status is still ACTIVE

2. If OK Change status
then from ACTIVE to COMMITTED
else from ACTIVE to ABORTED

o Individual CAS

Concurrent and parallel programming

DSTM - Final remarks [Hearlihy2003]

* Read-only transactions do not need any ATOMIC
instruction for each read

 Committed transactions appear to take effect when the
transition ACTIVE->COMMITTED occurs

o Linearizable/Strict serializable
* Why careful read (validation at each read)?

* Obstruction freedom
o Transactions abort iff conflicts occur

Concurrent and parallel programming

Transational Locking 2 [Dice2006]

 Word-based STM

o Each transactional memory location is associated with a

versioned write lock <version,is_locked>
™ Versioned write locks

version L

v v v v

 Exploits a Global Version Clock (GVC) to quickly detect
updates (it increases before a write-transaction commits)

* Transactions keep track of
o GVC
o Read set
o Write set

Concurrent and parallel programming

Transational Locking 2 [Dice2006]

* BEGIN:

o Sample GVC and store it in a transaction(thread)-local variable RV

* WRITE(m,V) operation:
o Add <m,v> to the write set

e READ(m)(v) operation:
o IF m in write set THEN return the associated v
o ELSE

* Load the versioned lock <version,locked> associated to m
* |F locked or version > RV abort

* Loadvfromm

* |F locked or version > RV abort

* Add <m> to the readset

Concurrent and parallel programming

Transational Locking 2 [Dice2006]

* COMMIT:

o For each min the write set acquire the related versioned lock
 If acquisition fails abort

Increment GVC via Add&Fetch obtaining WV
IF WV = RV+1

* Validate the read set (abort if locked or version > RV)
Store each value in the write set

Release each versioned lock by using WV as version

(0]

(o]

(0]

(0]

Concurrent and parallel programming

Transational Locking 2 [Dice2006]

* REMARKS:

o Re-validating the read set before applying updates is required
due to possible concurrent updates during write-set locking and
GVC increment

* Read-only transactions
° Do not need to increase GVC
° Do not need to acquire any lock
o Do not need to revalidate the read set
o Do not need the read set

Concurrent and parallel programming

Transational Locking 2 [Dice2006]

* REMARKS:

o Re-validating the read set before applying updates is required
due to possible concurrent updates during write-set locking and
GVC increment

* Read-only transactions
° Do not need to increase GVC
° Do not need to acquire any lock
o Do not need to revalidate the read set
o Do not need the read set

Concurrent and parallel programming

What about Software Transactional Memory

Skip list, 16k elements, 20% updates

Throughput (x 10° txs/s)

20 40 60 80 100 120 140 160 180
Number of threads

Concurrent and parallel programming

What about Software Transactional Memory

* Scale as (or better than) fine-grain locking

* Overheads hamper scalability
o Due to instrumented access (overhead for each read/write)
o Read set validation

* Hot topic in 2000s
o A pletora of implementations for several programming languages
e C/C++: TinySTM, G++ v4.7 (still expertimental)
* C#: SXM by Microsoft (discontinued)
* Haskell: STM is part of the Haskell platform
* Scala: Akka framework

* Large debate on its practical impact

o Software Transactional Memory: Why Is It Only a Research Toy?: The
promise of STM may likely be undermined by its overheads and
workload applicabilities. [Cascaval2008]

o Transactional Memory Should Be an Implementation Technique, Not a
Programming Interface [Boehm?2009]

o Why STM can be more than a Research Toy [Dragojevi¢2011]

Concurrent and parallel programming

Hardware Transactional Memory

Intel TSX Application
BlueGene
RockProcessor MARSACHONS
Arm Transactional Hardware
Extension

IBM POWERS8 and 9

Memory: CPU:

. Explc?ltc cache coherency protocols « Ability to restore the
g Mod|f!ed processor state as the
* Exclusive one before the

. Shargd beginning

* Invalid

* Losing track of a cache line leads to an abort

Concurrent and parallel programming

Hardware transaction and abort

* Why can a hardware transaction abort?
o Whenever, we lose track of a cache line....

* Any reason that could lead to an invalidation of a tracked
cache line:

o Another core wants it exclusive (conflict)

o Change of execution mode (syscall, interrupts, page fault)
o Working set too large

o False cache sharing

* MESI:
o https://www.scss.tcd.ie/Jeremy.Jones/ViviolS/caches/MESI.htm

e TSX MESI:
o https://www.scss.tcd.ie/Jeremy.Jones/ViviolS/caches/TSX.htm

Concurrent and parallel programming

https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESI.htm
https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/TSX.htm

Intel Transactional Synchronization eXtensions (TSX)

RTE
* XBEGIN:

o Start a hardware transaction (keep track of accessed cache lines)

* XEND:

o Try to commit a hardware transaction (untrack cache lines)

* XABORT:

o Make a hardware transaction abort programmatically

Concurrent and parallel programming

Are HTM so simple?

int committed count ; < Allthreads try to updated the
] o same cache line!!!
volid transaction () {

char *buf = malloc (4096*1024); // 4MB

start_tsx : . Huge memory init!!!
if (XBEGIN() == XBEGIN STARTED) {
committed count++;
This is not a do] ob ()
good fallback path! XEND () . e
return;
}

else goto start tsx;

Concurrent and parallel programming

Are HTM so simple?

int committed count;
void transaction () {
char *buf = malloc (4096*1024); // 4MB

start_tsx : . Huge memory init!!!
if (_XBEGIN () == _XBEGIN_STARTED) {
do job | f e e)
This is not a _XEND ()

good fallback path! g p (§committed count,l);

return;

J

else goto start tsx;

Concurrent and parallel programming

Are HTM so simple?

int committed count;
void transaction () {
char *buf = malloc(4096*1024); // 4MB
init (buf);
start tsx:
if (XBEGIN() == XBEGIN STARTED) {

This is not a dO_j ob (° o .)
good fallback path!_XEND ()7

FAD (&committed count,1);
return;

J

else goto start tsx;

Concurrent and parallel programming

Are noTM so simple?

int committed count; wolatile int lock = UNLOCKED;
volid transaction () {
char *buf = malloc (4096*1024); // 4MB
init (buf); bool fb = false; int retry =0;
start tsx:
if (fb || _XBEGIN() == _XBEGIN STARTED) {
if (lock==LOCKED) XABORT () ;
1f (fb) TTAS (&lock, LOCKED) ;

do job (buf, ...)

if (fb) lock = UNLOCKED;
_XEND () ;

FAD (&committed count,1);
return;

}
else {fb=++retry>MAX RETRY; goto start tsx;}

Concurrent and parallel programming

49

Are noTM so simple?

XBEGIN ... XABORT LOCK ... UNLOCK

XBEGIN ... XABORT XBEGIN ... XABORT SPIN... LOCK ... UNLOCK
XBEGIN ... XAt ORT @ XBEGIN ... XABORT SPIN... LOCK ... UNLOCK

XBEGIN ... XABORT LOCK ... UNLOCK

XBEGIN ... XABORT XBEGIN ... XABORT SPIN... LOCK ...
- No one will use the fast transactional path until
a period of quiescence!!!

Concurrent and parallel programming

Are noTM so simple?

int committed count; wolatile int lock = UNLOCKED;
void transaction () {

char *buf = malloc(4096*1024); // 4MB

init (buf); bool fb = false; int retry =0;

start tsx:

if (fb || _XBEGIN() == XBEGIN STARTED) {
if (lock==LOCKED) {while (lock==LOCKED) ;
_XABORT () ; }
if (fb) TTAS (&lock, LOCKED) ;
do job (buf,...)
if(fb) lock = UNLOCKED;
_XEND () ;
FAD (&committed count,1);
return;

}
else {fb=++retry<MAX RETRY; goto start tsx;}

—

Concurrent and parallel programming

51

Are noTM so simple?

* We cannot replace lock with HTM as is due to performance
aspects

* Naive code might abort frequently due to:
o Statistics
Memory allocations
Fallback path policy make the fast past rarely used
False cache-sharing
NUMA
NVRAM

(o]

(o]

(0]

(0]

(0]

Concurrent and parallel programming

Intel Transactional Synchronization eXtensions (TSX)

RTE
* XBEGIN:

o Start a hardware transaction (keep track of accessed cache lines)

* XEND:

o Try to commit a hardware transaction (untrack cache lines)

* XABORT:

o Make a hardware transaction abort programmatically
* Needs a fallback path (e.g., by using locks)
HLE
* XACQUIRE:

o Start a hardware transaction
o execute a RMW without the LOCK prefix
(XACQUIRE LOCK XCHG mutex, 1)
* XRELEASE:
o Execute a mov to release the lock (XRELEASE mov mutex, 0)
o Try to commit

* No nee)d for an additional fallback path (just drop xacquire/xrelease and
restart

Concurrent and parallel programming

Is it worth investing in optimizing our code for HTM?

* VERY HARD TO SAY
HTM has been around for a while (2014), BUT:
* |IBM BlueGene/Q

 RockProcessor

- IBM POWERS and8 {6 Wa1ISA v.2.07 to 3.0)
e |Intel TSX Not present in 10 (3.1)

o First releases were bugged => disabled by firmware update

o As other speculative components of Intel processors, they are
vulnerable (leak info, see TSX Asynchronous Abort (TAA) / CVE-2019-
11135) => disabled by firmware update

o Not supported in Comet Lake and Ice Lake cpu (finger crossed for the
next one)

o Sapphire Rapids (2023) support TSX (and a new instruction TSXLDTRK),
but still unsecure when Hyperthreading is enabled

It is a high-end processor, not an off-the-shelf

* Arm Transactional Extension introduced in the last generation
Armv9 (Mar 30 2021)

Concurrent and parallel programming

What about Software Transactional Memory

From a programmer perspective:

* It is less efficient than hardware implementation
* It generally provides stronger progress

* No need for a fallback path

* Processor independent

e Stick with the support of the community/organization
developing it

Concurrent and parallel programming

What about Transactional Memory

* Topics we did not discuss about TM
o Distributed STM
o Heterogenous STM (CPU+GPU)
c TM on NVRAM
o |s opacity the actual reference correctness criteria?

Concurrent and parallel programming

	Locks
	Slide 1: Transactional Memory
	Slide 2
	Slide 3: Transactional Memory
	Slide 4: Transactions
	Slide 5: Transactions
	Slide 6: Transactions
	Slide 7: Transactions
	Slide 8: Transactions
	Slide 9: Histories
	Slide 10: Correctness conditions (recall)
	Slide 11: (View) Serializability [Papadimitriou1979]
	Slide 12: (View) Serializability [Papadimitriou1979]
	Slide 13: (View) Serializability [Papadimitriou1979]
	Slide 14: (View) Serializability [Papadimitriou1979]
	Slide 15: (View) Serializability [Papadimitriou1979]
	Slide 16: Opacity [Guerraoui2008]
	Slide 17: Transactions
	Slide 18: Transactions
	Slide 19: Wait freedom
	Slide 20: Wait freedom
	Slide 21: Wait freedom
	Slide 22: Obstruction freedom
	Slide 23: Transactions
	Slide 24: Software Transactional Memory
	Slide 25: DSTM [Hearlihy2003]
	Slide 26: DSTM [Hearlihy2003]
	Slide 27: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 28: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 29: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 30: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 31: DSTM – First open in READ mode [Hearlihy2003]
	Slide 32: DSTM – Already opened objects [Hearlihy2003]
	Slide 33: DSTM – Commit [Hearlihy2003]
	Slide 34: DSTM – Final remarks [Hearlihy2003]
	Slide 36: Transational Locking 2 [Dice2006]
	Slide 37: Transational Locking 2 [Dice2006]
	Slide 38: Transational Locking 2 [Dice2006]
	Slide 39: Transational Locking 2 [Dice2006]
	Slide 40: Transational Locking 2 [Dice2006]
	Slide 41: What about Software Transactional Memory
	Slide 42: What about Software Transactional Memory
	Slide 43: Hardware Transactional Memory
	Slide 44: Hardware transaction and abort
	Slide 45: Intel Transactional Synchronization eXtensions (TSX)
	Slide 46: Are HTM so simple?
	Slide 47: Are HTM so simple?
	Slide 48: Are HTM so simple?
	Slide 49: Are HTM so simple?
	Slide 50: Are HTM so simple?
	Slide 51: Are HTM so simple?
	Slide 52: Are HTM so simple?
	Slide 53: Intel Transactional Synchronization eXtensions (TSX)
	Slide 54: Is it worth investing in optimizing our code for HTM?
	Slide 55: What about Software Transactional Memory
	Slide 56: What about Transactional Memory

