
Programmazione concorrente
Laurea Magistrale in Ingegneria Informatica

Università Tor Vergata

Docente: Romolo Marotta

Transactional Memory

Synchronization approaches:

• Non-blocking data structures

• Locks

• Transactional Memory

Transactional Memory

• Why?
◦ Fine grain locking (or non-blocking synchronization) can scale but

it is hard

◦ Locks do not scale in general, but they are hard too:
• Deadlocks

• Races (forgotten locks)

• Do not compose

• Transactions:

◦ They compose (e.g. nested transactions)

◦ Simpler to reason about

Concurrent and parallel programming
3

Begin_transaction

 x.op()

 y.op2(k)

 z.op(j)

End_transaction

Transactions

• Well known in the context of databases

• Conceived integration of transaction in hardware (1993)

• Software implementations (1995-2005)

• Commercial hardware support (2013)

Concurrent and parallel programming
4

Transaction on
Transactional Memory

Transaction on
DBMS

Transactions

Concurrent and parallel programming
5

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

DBMS

Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Transactions

Concurrent and parallel programming
6

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Transactional Memory

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Transactions

Concurrent and parallel programming
7

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Transactional Memory

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

Transactions

Concurrent and parallel programming
8

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Histories

• The execution of transaction on a set of objects is modeled by a
history

• A history is a sequence of:
◦ Operations (e.g., read, write, push, pop …)
◦ Commits
◦ Aborts

• Two transactions are:
◦ sequential if one invokes its first operations after the other one

commits or aborts
◦ concurrent otherwise

• A history is:
◦ sequential if has only sequential transactions
◦ concurrent otherwise

• Two histories are equivalent if they have the same transactions

Concurrent and parallel programming
9

Correctness conditions (recall)

• A is correct if it is equivalent to a
correct

Concurrent and parallel programming
10

sequential execution
concurrent execution

 A history is correct if it is to a correct
sequential history

equivalent
which satisfies a given correctness

condition

• A correctness condition specifies the set of histories to be
considered as reference

In order to implement correctly a concurrent object wrt a
correctness condition, we must guarantee that every
possible history on our implementation satisfies the
correctness condition

(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
11

W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

W(q,1) R(p,0) Com() R(q,1) W(p,1) Com()

• Serializable?

(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
12

W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

W(q,1) R(p,0) Com() R(q,0) W(p,1) Com()

• Serializable?

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
13

W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

• Serializable? No!

(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
14

W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

• Serializable? No!

W(q,1) W(p,1) Com()R(q,0) R(p,1) Abo()

• Serializable?

W(q,1) W(p,1) Com()

Yes!

(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
15

W(q,1) W(p,1) Com()R(q,0) R(p,1) Abo()

• Serializable? Yes!

…

A=q,B=p // A=0,B=1

…

if(!A) x = tot/(B-1)

…

…

while(A <= B) {

B = B - A;

}

…

Divide by 0!

Infinite loop!

But, what happens in the case of TM?

• Could strict serializability be of any help?
◦ Serializability + Real-time order
◦ It predicates only on committed transactions

Opacity [Guerraoui2008]

Concurrent and parallel programming
16

• A history H is opaque if
◦ It is equivalent to a sequential history H’
◦ H’ is sequential
◦ H’ preserves transactions’ real-time order
◦ H’ is legal

• Opaque?

W(p,1) W(q,2) Com()

W(p,5)R(p,1) Abo()

W(q,3) R(p,1) Com()

R(q,2)
• Opaque?

W(p,1) Com()

W(p,2) Com()

R(p,1) R(q,2) Abo()

W(q,2)

Transactions

Concurrent and parallel programming
17

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Transactions

Concurrent and parallel programming
18

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead
of developers

Float Exceptions are not
transparent to developers

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Deadlock or starvation
freedom

Obstruction
freedom

Wait freedom

Concurrent and parallel programming
19

R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()

Wait freedom

Concurrent and parallel programming
20

R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()

Wait freedom

Concurrent and parallel programming
21

R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()

IMPOSSIBLE IN AN ASYNCHRONOUS SYSTEM

Obstruction freedom

Concurrent and parallel programming
22

• Every correct transaction that runs in isolation (without
contention) eventually commits

• Abort is unavoidable

• Contention manager can help with contention scenarios

• When a new transaction A creates a conflict with B
◦ Aggressive

• always abort B

◦ Backoff
• B waits an exp. back-off time, then abort A if still conflicting

◦ Karma
• Assign priority to A and B, abort lowest priority, increase priority after

abort

◦ Greedy
• Use start time as priority, if Pb < Pa and A is not waiting then B wait,

otherwise abort A

Transactions

Concurrent and parallel programming
23

Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Software TM

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

(view) serializability:
Committed transactions see

consistent values

Opacity:
Both committed and aborted

transactions see
consistent values

Deadlock or starvation
freedom

Obstruction
freedom

x = 2; y = 1

Begin:

 d = x

Abort

Begin:

 y++

 x++

Commit

Software Transactional Memory

Concurrent and parallel programming
24

Application

Software TM

Transactions

DSTM
JVSTM
RSTM
TL2
TinySTM
SwissTM
McRT-STM
Bartok-STM
NOrec
LSA
E-STM
SXM
ASTM
WSTM
PhTM

Hardware

DSTM [Hearlihy2003]

Concurrent and parallel programming
25

• Obstruction freedom + contention manager

• It works at object granularity
◦ Transactions open objects in READ/WRITE mode to apply an

operation

◦ Conflicts are detected when opening objects

• A conflicting write makes one of the two conflicting
transaction abort via contention manager (killer write)

• A read requires that all already-read objects are still the
most recently committed version (careful read)

• Validate all objects read upon commit

DSTM [Hearlihy2003]

Concurrent and parallel programming
26

• Transactions have:
◦ A status

• Committed
• Active
• Aborted

◦ Collection of objects opened in READ mode

• Objects are incapsulated within a Transactional Object which keeps references to
◦ Transaction currently manipulating the object in WRITE mode
◦ Current and tentative versions of the object

 with an intermediate objected called Locator

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L

Object data

Object data

Status

Read_set
Transaction T

Data d1

Data d0

DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
27

• T is the current transaction, whose status is ACTIVE

• T allocates a new Locator L

• T accesses to current locator L’ of O to retrieve last
transaction T’ that executed the last open in WRITE mode

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Status

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
28

• T behaves accordingly to T’ status
◦ ACTIVE: T calls the contention manager

• T waits a back-off time

• T makes T’ abort via Compare&Swap

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVEABORTED
CAS

DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
29

• T behaves accordingly to T’ status
◦ ABORTED:

• T use L’.old_obj_ptr to get current version of O

• L.old_obj_ptr = L’.old_obj_ptr

• L.new_obj_ptr = CLONE(L’.old_obj_ptr)

• Swap L’ and L

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVEABORTED

Object data Data d2

CAS

DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
30

• T behaves accordingly to T’ status
◦ COMMITTED:

• T use L’.old_obj_ptr to get current version of O

• L.old_obj_ptr = L’.new_obj_ptr

• L.new_obj_ptr = CLONE(L’.new_obj_ptr)

• Swap L’ and L

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVECOMMITTED

Object data Data d2

CAS

DSTM – First open in READ mode [Hearlihy2003]

Concurrent and parallel programming
31

• Validate Read_set (see later)

• Fetch current committed version V via current locator
◦ New_obj_ptr if T’ is committed

◦ Old_obj_ptr otherwise

• Add <O,V> to the Read_set

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

Status = ACTIVECOMMITTED

Status = ACTIVE

Read_set
Transaction T

<O,d1>

DSTM – Already opened objects [Hearlihy2003]

Concurrent and parallel programming
32

• Already opened in READ mode:
◦ Retrieve V from the Read_set

• Already opened in WRITE mode:
◦ Retrieve V from the current locator

ptr

TObject O

Object data Data d1

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Object data Data d2

<O,d1>

DSTM – Commit [Hearlihy2003]

Concurrent and parallel programming
33

1. Validate the transaction
◦ Transaction aborts on WRITE/WRITE conflicts

• No need to validate WRITE upon commit

◦ Validate Read_set
• For each pair <O,V> check that V is still the most recent committed version

◦ Read_set validation is non atomic
• Check the status is still ACTIVE

2. If OK Change status
then from ACTIVE to COMMITTED
else from ACTIVE to ABORTED
◦ Individual CAS

DSTM – Final remarks [Hearlihy2003]

Concurrent and parallel programming
34

• Read-only transactions do not need any ATOMIC
instruction for each read

• Committed transactions appear to take effect when the
transition ACTIVE->COMMITTED occurs

◦ Linearizable/Strict serializable

• Why careful read (validation at each read)?

• Obstruction freedom
◦ Transactions abort iff conflicts occur

Transational Locking 2 [Dice2006]

Concurrent and parallel programming
36

• Word-based STM
◦ Each transactional memory location is associated with a

versioned write lock <version,is_locked>

• Exploits a Global Version Clock (GVC) to quickly detect
updates (it increases before a write-transaction commits)

• Transactions keep track of
◦ GVC

◦ Read set

◦ Write set

TM

version L

Versioned write locks

Transational Locking 2 [Dice2006]

Concurrent and parallel programming
37

• BEGIN:
◦ Sample GVC and store it in a transaction(thread)-local variable RV

• WRITE(m,v) operation:
◦ Add <m,v> to the write set

• READ(m)(v) operation:
◦ IF m in write set THEN return the associated v

◦ ELSE
• Load the versioned lock <version,locked> associated to m

• IF locked or version > RV abort

• Load v from m

• IF locked or version > RV abort

• Add <m> to the readset

Transational Locking 2 [Dice2006]

Concurrent and parallel programming
38

• COMMIT:
◦ For each m in the write set acquire the related versioned lock

• If acquisition fails abort

◦ Increment GVC via Add&Fetch obtaining WV

◦ IF WV != RV+1
• Validate the read set (abort if locked or version > RV)

◦ Store each value in the write set

◦ Release each versioned lock by using WV as version

Transational Locking 2 [Dice2006]

Concurrent and parallel programming
39

• REMARKS:
◦ Re-validating the read set before applying updates is required

due to possible concurrent updates during write-set locking and
GVC increment

• Read-only transactions
◦ Do not need to increase GVC

◦ Do not need to acquire any lock

◦ Do not need to revalidate the read set

◦ Do not need the read set

Transational Locking 2 [Dice2006]

Concurrent and parallel programming
40

• REMARKS:
◦ Re-validating the read set before applying updates is required

due to possible concurrent updates during write-set locking and
GVC increment

• Read-only transactions
◦ Do not need to increase GVC

◦ Do not need to acquire any lock

◦ Do not need to revalidate the read set

◦ Do not need the read set

What about Software Transactional Memory

Concurrent and parallel programming
41

What about Software Transactional Memory

• Scale as (or better than) fine-grain locking
• Overheads hamper scalability

◦ Due to instrumented access (overhead for each read/write)
◦ Read set validation

• Hot topic in 2000s
◦ A pletora of implementations for several programming languages

• C/C++: TinySTM, G++ v4.7 (still expertimental)
• C#: SXM by Microsoft (discontinued)
• Haskell: STM is part of the Haskell platform
• Scala: Akka framework

• Large debate on its practical impact
◦ Software Transactional Memory: Why Is It Only a Research Toy?: The

promise of STM may likely be undermined by its overheads and
workload applicabilities. [Cascaval2008]

◦ Transactional Memory Should Be an Implementation Technique, Not a
Programming Interface [Boehm2009]

◦ Why STM can be more than a Research Toy [Dragojević2011]

Concurrent and parallel programming
42

Hardware Transactional Memory

Concurrent and parallel programming
43

Application

Hardware

Software TM
Hardware

Transactions

Memory:
• Exploit cache coherency protocols
• Modified
• Exclusive
• Shared
• Invalid
• Tracked for speculative execution of transaction
• Losing track of a cache line leads to an abort

CPU:
• Ability to restore the

processor state as the
one before the
beginning

Intel TSX
BlueGene
RockProcessor
Arm Transactional
Extension
IBM POWER8 and 9

Hardware transaction and abort

• Why can a hardware transaction abort?
◦ Whenever, we lose track of a cache line….

• Any reason that could lead to an invalidation of a tracked
cache line:

◦ Another core wants it exclusive (conflict)

◦ Change of execution mode (syscall, interrupts, page fault)

◦ Working set too large

◦ False cache sharing

• MESI:
◦ https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESI.htm

• TSX MESI:
◦ https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/TSX.htm

Concurrent and parallel programming
44

https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESI.htm
https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/TSX.htm

Intel Transactional Synchronization eXtensions (TSX)

RTE

• XBEGIN:
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

Concurrent and parallel programming
45

Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

 committed_count++;

 do_job(buf,...)
 _XEND();

 return;

 }

 else goto start_tsx;

}

Concurrent and parallel programming
46

Huge memory init!!!

All threads try to updated the
same cache line!!!

This is not a
good fallback path!

Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

 do_job(buf,...)
 _XEND();

 FAD(&committed_count,1);

 return;

 }

 else goto start_tsx;

}

Concurrent and parallel programming
47

Huge memory init!!!

This is not a
good fallback path!

Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf);

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

 do_job(buf,...)
 _XEND();

 FAD(&committed_count,1);

 return;

 }

 else goto start_tsx;

}
Concurrent and parallel programming

48

This is not a
good fallback path!

Are HTM so simple?

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

 if(fb || _XBEGIN() == _XBEGIN_STARTED){

 if(lock==LOCKED) _XABORT();

 if(fb) TTAS(&lock, LOCKED);

 do_job(buf,...)
 if(fb) lock = UNLOCKED;
 _XEND();

 FAD(&committed_count,1);

 return;

 }

 else {fb=++retry>MAX_RETRY; goto start_tsx;}

} Concurrent and parallel programming
49

NO!

Are HTM so simple?

Concurrent and parallel programming
50

NO!

XBEGIN … XABORT LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT

XBEGIN … XABORT

SPIN… LOCK … UNLOCK

SPIN …….……………………………………………………….. LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

No one will use the fast transactional path until
a period of quiescence!!!

Are HTM so simple?

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

 if(fb || _XBEGIN() == _XBEGIN_STARTED){

 if(lock==LOCKED){while(lock==LOCKED);
 _XABORT();}

 if(fb) TTAS(&lock, LOCKED);

 do_job(buf,...)
 if(fb) lock = UNLOCKED;
 _XEND();

 FAD(&committed_count,1);

 return;

 }

 else {fb=++retry<MAX_RETRY; goto start_tsx;}

}
Concurrent and parallel programming

51

NO!

Are HTM so simple?

• We cannot replace lock with HTM as is due to performance
aspects

• Naïve code might abort frequently due to:
◦ Statistics

◦ Memory allocations

◦ Fallback path policy make the fast past rarely used

◦ False cache-sharing

◦ NUMA

◦ NVRAM

Concurrent and parallel programming
52

NO!

Intel Transactional Synchronization eXtensions (TSX)

RTE

• XBEGIN:
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

• Needs a fallback path (e.g., by using locks)

HLE

• XACQUIRE:
◦ Start a hardware transaction
◦ execute a RMW without the LOCK prefix

(XACQUIRE LOCK XCHG mutex, 1)

• XRELEASE:
◦ Execute a mov to release the lock (XRELEASE mov mutex, 0)
◦ Try to commit

• No need for an additional fallback path (just drop xacquire/xrelease and
restart)

Concurrent and parallel programming
53

Is it worth investing in optimizing our code for HTM?

• VERY HARD TO SAY
HTM has been around for a while (2014), BUT:
• IBM BlueGene/Q
• RockProcessor
• IBM POWER8 and 9 (Power ISA v.2.07 to 3.0)
• Intel TSX

◦ First releases were bugged => disabled by firmware update
◦ As other speculative components of Intel processors, they are

vulnerable (leak info, see TSX Asynchronous Abort (TAA) / CVE-2019-
11135) => disabled by firmware update

◦ Not supported in Comet Lake and Ice Lake cpu (finger crossed for the
next one)

◦ Sapphire Rapids (2023) support TSX (and a new instruction TSXLDTRK),
but still unsecure when Hyperthreading is enabled

• Arm Transactional Extension introduced in the last generation
Armv9 (Mar 30 2021)

Concurrent and parallel programming
54

It is a high-end processor, not an off-the-shelf

Canceled in 2009

Not present in 10 (3.1)

What about Software Transactional Memory

From a programmer perspective:

• It is less efficient than hardware implementation

• It generally provides stronger progress

• No need for a fallback path

• Processor independent

• Stick with the support of the community/organization
developing it

Concurrent and parallel programming
55

What about Transactional Memory

• Topics we did not discuss about TM
◦ Distributed STM

◦ Heterogenous STM (CPU+GPU)

◦ TM on NVRAM

◦ Is opacity the actual reference correctness criteria?

Concurrent and parallel programming
56

	Locks
	Slide 1: Transactional Memory
	Slide 2
	Slide 3: Transactional Memory
	Slide 4: Transactions
	Slide 5: Transactions
	Slide 6: Transactions
	Slide 7: Transactions
	Slide 8: Transactions
	Slide 9: Histories
	Slide 10: Correctness conditions (recall)
	Slide 11: (View) Serializability [Papadimitriou1979]
	Slide 12: (View) Serializability [Papadimitriou1979]
	Slide 13: (View) Serializability [Papadimitriou1979]
	Slide 14: (View) Serializability [Papadimitriou1979]
	Slide 15: (View) Serializability [Papadimitriou1979]
	Slide 16: Opacity [Guerraoui2008]
	Slide 17: Transactions
	Slide 18: Transactions
	Slide 19: Wait freedom
	Slide 20: Wait freedom
	Slide 21: Wait freedom
	Slide 22: Obstruction freedom
	Slide 23: Transactions
	Slide 24: Software Transactional Memory
	Slide 25: DSTM [Hearlihy2003]
	Slide 26: DSTM [Hearlihy2003]
	Slide 27: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 28: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 29: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 30: DSTM – First open in WRITE mode [Hearlihy2003]
	Slide 31: DSTM – First open in READ mode [Hearlihy2003]
	Slide 32: DSTM – Already opened objects [Hearlihy2003]
	Slide 33: DSTM – Commit [Hearlihy2003]
	Slide 34: DSTM – Final remarks [Hearlihy2003]
	Slide 36: Transational Locking 2 [Dice2006]
	Slide 37: Transational Locking 2 [Dice2006]
	Slide 38: Transational Locking 2 [Dice2006]
	Slide 39: Transational Locking 2 [Dice2006]
	Slide 40: Transational Locking 2 [Dice2006]
	Slide 41: What about Software Transactional Memory
	Slide 42: What about Software Transactional Memory
	Slide 43: Hardware Transactional Memory
	Slide 44: Hardware transaction and abort
	Slide 45: Intel Transactional Synchronization eXtensions (TSX)
	Slide 46: Are HTM so simple?
	Slide 47: Are HTM so simple?
	Slide 48: Are HTM so simple?
	Slide 49: Are HTM so simple?
	Slide 50: Are HTM so simple?
	Slide 51: Are HTM so simple?
	Slide 52: Are HTM so simple?
	Slide 53: Intel Transactional Synchronization eXtensions (TSX)
	Slide 54: Is it worth investing in optimizing our code for HTM?
	Slide 55: What about Software Transactional Memory
	Slide 56: What about Transactional Memory

