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Transactional Memory



Synchronization approaches:

• Non-blocking data structures

• Locks

• Transactional Memory



Transactional Memory

• Why?
◦ Fine grain locking (or non-blocking synchronization) can scale but 

it is hard 

◦ Locks do not scale in general, but they are hard too:
• Deadlocks

• Races (forgotten locks)

• Do not compose

• Transactions:

◦ They compose (e.g. nested transactions)

◦ Simpler to reason about

Concurrent and parallel programming
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Begin_transaction

 x.op()

 y.op2(k) 

 z.op(j)

End_transaction



Transactions

• Well known in the context of databases 

• Conceived integration of transaction in hardware (1993)

• Software implementations (1995-2005)

• Commercial hardware support (2013)

Concurrent and parallel programming
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Transaction on
Transactional Memory

Transaction on
DBMS



Transactions

Concurrent and parallel programming
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

DBMS

Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit



Transactions
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Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS

Transactional Memory

Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead 
of developers

Float Exceptions are not 
transparent to developers



Transactions
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Transaction on top of
Transactional Memory

Transaction on top of
DBMS

Application

Hardware

Application

Hardware

DBMS
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Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

Managed by DBMS instead 
of developers

Float Exceptions are not 
transparent to developers

(view) serializability:
Committed transactions see 

consistent values

Opacity:
Both committed and aborted 

transactions see 
consistent values



Histories

• The execution of transaction on a set of objects is modeled by a 
history

• A history is a sequence of:
◦ Operations (e.g., read, write, push, pop …)
◦ Commits
◦ Aborts

• Two transactions are:
◦ sequential if one invokes its first operations after the other one 

commits or aborts
◦ concurrent otherwise

• A history is:
◦ sequential if has only sequential transactions
◦ concurrent otherwise

• Two histories are equivalent if they have the same transactions

Concurrent and parallel programming
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Correctness conditions (recall)

• A                                          is correct if it is equivalent to a 
correct

Concurrent and parallel programming
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sequential execution
concurrent execution

 A history is correct if it is                       to a correct 
sequential history

equivalent
which satisfies a given correctness 

condition

• A correctness condition specifies the set of histories to be 
considered as reference

In order to implement correctly a concurrent object wrt a 
correctness condition, we must guarantee that every 
possible history on our implementation satisfies the 
correctness condition



(View) Serializability [Papadimitriou1979]

Concurrent and parallel programming
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W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

W(q,1) R(p,0) Com() R(q,1) W(p,1) Com()

• Serializable?



(View) Serializability [Papadimitriou1979]
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W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

W(q,1) R(p,0) Com() R(q,0) W(p,1) Com()

• Serializable? 

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()



(View) Serializability [Papadimitriou1979]
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W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

• Serializable? No!



(View) Serializability [Papadimitriou1979]
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W(q,1) R(p,0) Com()

• A history H of committed transactions is serializable if
◦ It is equivalent to a sequential history H’

◦ H’ is sequential

◦ H’ is legal, aka every read returns the last written value

R(q,1) W(p,1) Com()

• Serializable? Yes!

W(q,1) R(p,0) Com()R(q,0) W(p,1) Com()

• Serializable? No!

W(q,1) W(p,1) Com()R(q,0) R(p,1) Abo()

• Serializable? 

W(q,1) W(p,1) Com()

Yes!



(View) Serializability [Papadimitriou1979]
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W(q,1) W(p,1) Com()R(q,0) R(p,1) Abo()

• Serializable? Yes!

…

A=q,B=p // A=0,B=1

…

if(!A) x = tot/(B-1)

…

…

while(A <= B) {

B = B - A;

}

…

Divide by 0!

Infinite loop!

But, what happens in the case of TM?

• Could strict serializability be of any help?
◦ Serializability + Real-time order
◦ It predicates only on committed transactions



Opacity [Guerraoui2008]

Concurrent and parallel programming
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• A history H is opaque if
◦ It is equivalent to a sequential history H’
◦ H’ is sequential
◦ H’ preserves transactions’ real-time order 
◦ H’ is legal

• Opaque?

W(p,1) W(q,2) Com()

W(p,5)R(p,1) Abo()

W(q,3) R(p,1) Com()

R(q,2)
• Opaque?

W(p,1) Com()

W(p,2) Com()

R(p,1) R(q,2) Abo()

W(q,2)



Transactions
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Transactions
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Wait freedom
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R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()



Wait freedom
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R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()



Wait freedom

Concurrent and parallel programming
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R(p,0) W(q,2) Abo()

• Every correct transaction eventually commits

• Finite number of aborts

R(q,0) W(p,1) Com()

IMPOSSIBLE IN AN ASYNCHRONOUS SYSTEM



Obstruction freedom

Concurrent and parallel programming
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• Every correct transaction that runs in isolation (without 
contention) eventually commits

• Abort is unavoidable

• Contention manager can help with contention scenarios

• When a new transaction A creates a conflict with B
◦ Aggressive

• always abort B

◦ Backoff
• B waits an exp. back-off time, then abort A if still conflicting

◦ Karma
• Assign priority to A and B, abort lowest priority, increase priority after 

abort

◦ Greedy
• Use start time as priority, if Pb < Pa and A is not waiting then B wait, 

otherwise abort A



Transactions

Concurrent and parallel programming
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Transaction on top of
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Transaction on top of
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Hardware

Application
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Transactions
Transactions

x = 2; y = 1

Begin:

 d = x

 n = y

 write(z, 1/(n-d))

Abort

Begin:

 y++

 x++

Commit

(view) serializability:
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x = 2; y = 1

Begin:

 d = x

Abort

Begin:

 y++

 x++

Commit



Software Transactional Memory

Concurrent and parallel programming
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Application

Software TM

Transactions

DSTM
JVSTM
RSTM
TL2
TinySTM
SwissTM
McRT-STM
Bartok-STM
NOrec
LSA
E-STM 
SXM
ASTM
WSTM 
PhTM 

Hardware



DSTM [Hearlihy2003]
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• Obstruction freedom + contention manager

• It works at object granularity
◦ Transactions open objects in READ/WRITE mode to apply an 

operation

◦ Conflicts are detected when opening objects

• A conflicting write makes one of the two conflicting 
transaction abort via contention manager (killer write) 

• A read requires that all already-read objects are still the 
most recently committed version (careful read)

• Validate all objects read upon commit



DSTM [Hearlihy2003]

Concurrent and parallel programming
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• Transactions have:
◦ A status

• Committed
• Active
• Aborted

◦ Collection of objects opened in READ mode

• Objects are incapsulated within a Transactional Object which keeps references to
◦ Transaction currently manipulating the object in WRITE mode
◦ Current and tentative versions of the object

   with an intermediate objected called Locator

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L

Object data

Object data

Status

Read_set
Transaction T

Data d1

Data d0



DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
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• T is the current transaction, whose status is ACTIVE

• T allocates a new Locator L

• T accesses to current locator L’ of O to retrieve last 
transaction T’ that executed the last open in WRITE mode

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Status

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T



DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
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• T behaves accordingly to T’ status
◦ ACTIVE: T calls the contention manager

• T waits a back-off time

• T makes T’ abort via Compare&Swap

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVEABORTED
CAS



DSTM – First open in WRITE mode [Hearlihy2003]

Concurrent and parallel programming
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• T behaves accordingly to T’ status
◦ ABORTED:

• T use L’.old_obj_ptr to get current version of O

• L.old_obj_ptr = L’.old_obj_ptr

• L.new_obj_ptr = CLONE(L’.old_obj_ptr)

• Swap L’ and L

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVEABORTED

Object data Data d2

CAS



DSTM – First open in WRITE mode [Hearlihy2003]
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• T behaves accordingly to T’ status
◦ COMMITTED:

• T use L’.old_obj_ptr to get current version of O

• L.old_obj_ptr = L’.new_obj_ptr

• L.new_obj_ptr = CLONE(L’.new_obj_ptr)

• Swap L’ and L

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Status = ACTIVECOMMITTED

Object data Data d2

CAS



DSTM – First open in READ mode [Hearlihy2003]

Concurrent and parallel programming
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• Validate Read_set (see later)

• Fetch current committed version V via current locator
◦ New_obj_ptr if T’ is committed

◦ Old_obj_ptr otherwise

• Add <O,V> to the Read_set

ptr

TObject O

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L’

Object data

Object data

Read_set
Transaction T’

Data d1

Data d0

Status = ACTIVECOMMITTED

Status = ACTIVE

Read_set
Transaction T

<O,d1>



DSTM – Already opened objects [Hearlihy2003]

Concurrent and parallel programming
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• Already opened in READ mode:
◦ Retrieve V from the Read_set

• Already opened in WRITE mode:
◦ Retrieve V from the current locator

ptr

TObject O

Object data Data d1

transaction_ptr

new_obj_ptr

old_obj_ptr

Locator L
Status = ACTIVE

Read_set
Transaction T

Object data Data d2

<O,d1>



DSTM – Commit [Hearlihy2003]

Concurrent and parallel programming
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1. Validate the transaction
◦ Transaction aborts on WRITE/WRITE conflicts

• No need to validate WRITE upon commit

◦ Validate Read_set
• For each pair <O,V> check that V is still the most recent committed version

◦ Read_set validation is non atomic
• Check the status is still ACTIVE

2. If OK Change status
then from ACTIVE to COMMITTED
else from ACTIVE to ABORTED
◦ Individual CAS



DSTM – Final remarks [Hearlihy2003]

Concurrent and parallel programming
34

• Read-only transactions do not need any ATOMIC 
instruction for each read

• Committed transactions appear to take effect when the 
transition ACTIVE->COMMITTED occurs

◦ Linearizable/Strict serializable

• Why careful read (validation at each read)?

• Obstruction freedom
◦ Transactions abort iff conflicts occur



Transational Locking 2 [Dice2006]

Concurrent and parallel programming
36

• Word-based STM
◦ Each transactional memory location is associated with a 

versioned write lock <version,is_locked>

• Exploits a Global Version Clock (GVC) to quickly detect 
updates (it increases before a write-transaction commits)

• Transactions keep track of
◦ GVC

◦ Read set

◦ Write set

TM

version L

Versioned write locks



Transational Locking 2 [Dice2006]

Concurrent and parallel programming
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• BEGIN:
◦ Sample GVC and store it in a transaction(thread)-local variable RV

• WRITE(m,v) operation:
◦ Add <m,v> to the write set

• READ(m)(v) operation:
◦ IF m in write set THEN return the associated v

◦ ELSE 
• Load the versioned lock <version,locked> associated to m

• IF locked or version > RV abort

• Load v from m

• IF locked or version > RV abort

• Add <m> to the readset



Transational Locking 2 [Dice2006]

Concurrent and parallel programming
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• COMMIT:
◦ For each m in the write set acquire the related versioned lock

• If acquisition fails abort

◦ Increment GVC via Add&Fetch obtaining WV

◦ IF WV != RV+1 
• Validate the read set (abort if locked or version > RV)

◦ Store each value in the write set

◦ Release each versioned lock by using WV as version



Transational Locking 2 [Dice2006]

Concurrent and parallel programming
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• REMARKS:
◦ Re-validating the read set before applying updates is required 

due to possible concurrent updates during write-set locking and 
GVC increment

• Read-only transactions
◦ Do not need to increase GVC

◦ Do not need to acquire any lock

◦ Do not need to revalidate the read set

◦ Do not need the read set



Transational Locking 2 [Dice2006]

Concurrent and parallel programming
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• REMARKS:
◦ Re-validating the read set before applying updates is required 

due to possible concurrent updates during write-set locking and 
GVC increment

• Read-only transactions
◦ Do not need to increase GVC

◦ Do not need to acquire any lock

◦ Do not need to revalidate the read set

◦ Do not need the read set



What about Software Transactional Memory

Concurrent and parallel programming
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What about Software Transactional Memory

• Scale as (or better than) fine-grain locking
• Overheads hamper scalability

◦ Due to instrumented access (overhead for each read/write)
◦ Read set validation

• Hot topic in 2000s
◦ A pletora of implementations for several programming languages

• C/C++: TinySTM, G++ v4.7 (still expertimental)
• C#: SXM by Microsoft (discontinued)
• Haskell: STM is part of the Haskell platform
• Scala: Akka framework

• Large debate on its practical impact
◦ Software Transactional Memory: Why Is It Only a Research Toy?: The 

promise of STM may likely be undermined by its overheads and 
workload applicabilities. [Cascaval2008]

◦ Transactional Memory Should Be an Implementation Technique, Not a 
Programming Interface [Boehm2009]

◦ Why STM can be more than a Research Toy [Dragojević2011]

Concurrent and parallel programming
42



Hardware Transactional Memory

Concurrent and parallel programming
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Application

Hardware

Software TM
Hardware

Transactions

Memory:
• Exploit cache coherency protocols
• Modified
• Exclusive
• Shared
• Invalid
• Tracked for speculative execution of transaction
• Losing track of a cache line leads to an abort

CPU:
• Ability to restore the  

processor state as the 
one before the 
beginning 

Intel TSX
BlueGene
RockProcessor
Arm Transactional 
Extension
IBM POWER8 and 9



Hardware transaction and abort

• Why can a hardware transaction abort?
◦ Whenever, we lose track of a cache line….

• Any reason that could lead to an invalidation of a tracked 
cache line:

◦ Another core wants it exclusive (conflict)

◦ Change of execution mode (syscall, interrupts, page fault)

◦ Working set too large 

◦ False cache sharing

• MESI:
◦ https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESI.htm

• TSX MESI:
◦ https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/TSX.htm

Concurrent and parallel programming
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https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESI.htm
https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/TSX.htm


Intel Transactional Synchronization eXtensions (TSX)

RTE

• XBEGIN: 
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a  hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

Concurrent and parallel programming
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Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

  committed_count++;

  do_job(buf,...)
  _XEND();

  return;

 }

 else goto start_tsx;

}

Concurrent and parallel programming
46

Huge memory init!!!

All threads try to updated the 
same cache line!!!

This is not a 
good fallback path!



Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

  do_job(buf,...)
  _XEND();

  FAD(&committed_count,1);

  return;

 }

 else goto start_tsx;

}

Concurrent and parallel programming
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Huge memory init!!!

This is not a 
good fallback path!



Are HTM so simple?

int committed_count;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf);

start_tsx:

 if(_XBEGIN() == _XBEGIN_STARTED){

  do_job(buf,...)
  _XEND();

  FAD(&committed_count,1);

  return;

 }

 else goto start_tsx;

}
Concurrent and parallel programming

48

This is not a 
good fallback path!



Are HTM so simple?

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

 if(fb || _XBEGIN() == _XBEGIN_STARTED){

  if(lock==LOCKED) _XABORT();

  if(fb) TTAS(&lock, LOCKED);

  do_job(buf,...)
  if(fb) lock = UNLOCKED; 
  _XEND();

  FAD(&committed_count,1);

  return;

 }

 else {fb=++retry>MAX_RETRY; goto start_tsx;}

} Concurrent and parallel programming
49

NO!



Are HTM so simple?

Concurrent and parallel programming
50

NO!

XBEGIN … XABORT LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT

XBEGIN … XABORT

SPIN… LOCK … UNLOCK

SPIN …….……………………………………………………….. LOCK … UNLOCK

XBEGIN … XABORT XBEGIN … XABORT SPIN… LOCK … UNLOCK

No one will use the fast transactional path until 
a period of quiescence!!!



Are HTM so simple?

int committed_count; volatile int lock = UNLOCKED;

void transaction(){

char *buf = malloc(4096*1024); // 4MB

init(buf); bool fb = false; int retry =0;

start_tsx:

 if(fb || _XBEGIN() == _XBEGIN_STARTED){

  if(lock==LOCKED){while(lock==LOCKED);
    _XABORT();}

  if(fb) TTAS(&lock, LOCKED);

  do_job(buf,...)
  if(fb) lock = UNLOCKED; 
  _XEND();

  FAD(&committed_count,1);

  return;

 }

 else {fb=++retry<MAX_RETRY; goto start_tsx;}

}
Concurrent and parallel programming
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NO!



Are HTM so simple?

• We cannot replace lock with HTM as is due to performance 
aspects

• Naïve code might abort frequently due to:
◦ Statistics

◦ Memory allocations

◦ Fallback path policy make the fast past rarely used

◦ False cache-sharing

◦ NUMA

◦ NVRAM

Concurrent and parallel programming
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NO!



Intel Transactional Synchronization eXtensions (TSX)

RTE

• XBEGIN: 
◦ Start a hardware transaction (keep track of accessed cache lines)

• XEND:
◦ Try to commit a  hardware transaction (untrack cache lines)

• XABORT:
◦ Make a hardware transaction abort programmatically

• Needs a fallback path (e.g., by using locks)

HLE

• XACQUIRE: 
◦ Start a hardware transaction
◦ execute a RMW without the LOCK prefix 

(XACQUIRE LOCK XCHG mutex, 1)

• XRELEASE:
◦ Execute a mov  to release the lock (XRELEASE mov mutex, 0)
◦ Try to commit

• No need for an additional fallback path (just drop xacquire/xrelease and 
restart)

Concurrent and parallel programming
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Is it worth investing in optimizing our code for HTM?

• VERY HARD TO SAY
HTM has been around for a while (2014), BUT:
• IBM BlueGene/Q 
• RockProcessor
• IBM POWER8 and 9 (Power ISA v.2.07 to 3.0)
• Intel TSX

◦ First releases were bugged => disabled by firmware update
◦ As other speculative components of Intel processors, they are 

vulnerable (leak info, see TSX Asynchronous Abort (TAA) / CVE-2019-
11135) => disabled by firmware update

◦ Not supported in Comet Lake and Ice Lake cpu (finger crossed for the 
next one)

◦ Sapphire Rapids (2023) support TSX (and a new instruction TSXLDTRK), 
but still unsecure when Hyperthreading is enabled

• Arm Transactional Extension introduced in the last generation 
Armv9 (Mar 30 2021) 

Concurrent and parallel programming
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It is a high-end processor, not an off-the-shelf

Canceled in 2009

Not present in 10 (3.1)



What about Software Transactional Memory

From a programmer perspective:

• It is less efficient than hardware implementation

• It generally provides stronger progress

• No need for a fallback path

• Processor independent

• Stick with the support of the community/organization 
developing it

Concurrent and parallel programming
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What about Transactional Memory

• Topics we did not discuss about TM
◦ Distributed STM

◦ Heterogenous STM (CPU+GPU)

◦ TM on NVRAM

◦ Is opacity the actual reference correctness criteria?

Concurrent and parallel programming
56
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